ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨Ê®¾Å£©
£¨08.09 --08.15 / 2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
¡¡¡¡±¾Öܶ¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£ºÉ³ÃÅÊϾúÖÎÁÆÖ×Áö¿ÉÓÕ·¢É±Ãð°©Ï¸°ûÃâÒß·´Ó¦£»¼¹ËèËðÉËСÊóÀÖ³ÉÔÙÉúÉñ¾Í¨Â·£»·¢Ã÷¹ÇËèÖÐÔìѪ¸Éϸ°ûÉú̬íèµÄÖ÷Òª³ÉÔ±£»Ï¸°ûÒò×ӽ鵼µÄÖ×ÁöÃâÒßÁÆ·¨£»ÐÇÐνºÖÊϸ°û¿Éת»¯ÎªÉñ¾Ï¸°û¡£
1. ɳÃÅÊϾúÖÎÁÆÖ×Áö¿ÉÓÕ·¢É±Ãð°©Ï¸°ûÃâÒß·´Ó¦
¡¾ÕªÒª¡¿ÃÀ¹ú¿ÆÑ§Ôö½ø»á 2010-8-13 10:43:19
¡¡¡¡Ò»ÏîÔÚСÊóÖеÄеÄÑо¿±¨¸æËµ£¬ÓÃɳÃÅÊϾúÖÎÁÆÖ×Áö¿ÉÓÕ·¢Ò»ÖÖÄܹ»ÓÐÓÃɱÃð°©Ï¸°ûµÄÃâÒß·´Ó¦¡£¸Ã·¢Ã÷¿É×ÊÖú¿ÆÑ§¼ÒÃÇ´´Ôì¿É×¢Éäµ½²¡ÈËÌåÄÚµÄɱÃðÖ×ÁöµÄÃâÒßϸ°û£¬»òÆäÄÜ֤ʵ¶ÔÑз¢Ò»ÖÖDZÔڵĿ¹°©¡°ÒßÃ硱ÓÐËù×ÊÖú¡£ÔÚÌåÄÚѲ²éµÄÃâÒßϸ°û³£³£¿É½«ÔçÆÚµÄ°©Ï¸°ûʶ±ðΪÒì³£µÄϸ°û£¬²¢½«ÆäɱÃð¡£ÕâÒ»Àú³ÌÒÀÀµÓÚÅþÁ¬ÂѰ×43£¬ÕâÊÇ¿ÉÔÚ²î±ðÀàÐ͵Äϸ°û¼äÐγÉϸС½»Í¨Í¨µÀ£¨³Æ×÷¼ä϶ÅþÁ¬£©µÄÒ»ÖÖÂѰס£±»³Æ×÷ëĵÄÖ×ÁöÂѰ×Ë鯬¿Éͨ¹ýÕâЩͨµÀÌÓÒݲ¢½øÈëµ½ÔÚÆäÍâòչʾÕâЩëĵÄÃâÒßϸ°ûÖ®ÖС£ÕâЩëĵÄ×÷ÓÃÏ൱ÓÚ¡°ºìÆì¾¯Ê¾¡±£¬´Ó¶ø´¥·¢Ò»ÖÖÌØÒìÐԵĿ¹°©ÃâÒß·´Ó¦¡£¿ÉÊÇËæ×Ű©Ï¸°ûµÄÏ£ÍûºÍÔöÖ³£¬ËüÃÇ¿ÉÁîÃâÒßϸ°ûÎÞ·¨¶ÔÆä¾ÙÐÐʶ±ð¡£ÏÖÔÚ£¬Fabiana Saccheri¼°ÆäÔÚÒâ´óÀûµÄͬÊÂ֤ʵ£¬½«É³ÃÅÊϾú×¢Éäµ½Ö×ÁöÖ®ÖпÉÁîÕâЩÖ×Áöϸ°ûÖØÐÂÄܹ»±»ÃâÒßϸ°ûʶ±ð¡£Ñо¿Ö°Ô±·¢Ã÷£¬±»×¢ÉäµÄϸ¾úʩչÁËÒ»ÖÖÒªº¦ÐԵĹ¦Ð§£ºËüÃÇÖØÐ¼¤»îÁËÅþÁ¬ÂѰ×43£¬¶øÕâÖÖÂѰ×Ëæ×Ű©Ï¸°ûµÄÉú³¤³£³£»áÊܵ½ÒÖÖÆ¡£ÔÚ±¾Ñо¿ÖУ¬¸ÃÍŶӷ¢Ã÷£¬À´×ÔСÊóºÍÈ˵ÄѬȾÁËɳÃÅÊϾúµÄÐþÉ«ËØÁöϸ°û¿ÉÔöÌíÔÚÕâЩϸ°ûÖеÄÅþÁ¬ÂѰ×43µÄº¬Á¿¡£ ÆäЧ¹ûÊÇеļä϶ÅþÁ¬ÐγÉÁË£¬ËüʹµÃȾÓлÆÉ«Ó«¹âµÄС·Ö×ÓÄܹ»ÔÚÖ×Áöϸ°ûÖ®¼äͨÐлò´ÓÖ×Áöϸ°û½øÈëÃâÒßϸ°û¡£¿ÉÊÇÑо¿Ö°Ô±Ï£Íû²éÃ÷£¬ÕâÖÖ¿ÉʹÖ×ÁöëĽøÈëÃâÒßϸ°ûµÄ¼ä϶ÅþÁ¬Ò²»áÔÚ»îÌ嶯ÎïÖзºÆð¡£Òò´Ë£¬ËûÃǶԻ¼°©µÄСÊó¾ÙÐÐÁËɳÃÅÊϾúµÄÖÎÁƲ¢ÊӲ쵽£¬ÕýÈçÔÚʵÑéÊÒµÄÊèɢϸ°ûÖÐËùÊӲ쵽µÄ£¬ÕâЩÖ×ÁöëÄ¿Éͨ¹ý¼ä϶ÅþÁ¬¶ø½øÈëµ½ÃâÒßϸ°ûÖ®ÖУ¬ËüÃÇÔÚÄÇÀï±»×°ÔØµ½ÁËϸ°ûµÄÍâò¡£ÕâЩб»¼¤»îµÄÃâÒßϸ°ûͻȻÄܹ»Ê¶±ð²¢É±ÃðÔÚСÊóÖеÄÖ×Áöϸ°û¡£ÁîÈ˸ÐÐËȤµÄÊÇ£¬ÕâÖÖÒªÁ컹±£»¤Ð¡Ê󲻻ᱬ·¢°©Ö¢À©É¢µ½ÉíÌåµÄÆäËü²¿Î»£¬¶øÕâÕýÊÇÒ»ÖÖ¡°ÒßÃç½ÓÖÖ¡±ÐÎʽµÄÔ¤·ÀÐÔÕ½ÂÔ¡£
¡¾µãÆÀ¡¿
¡¡¡¡Í¨Ï꾡¾úÑ¬È¾ÖØÐ¼¤»îÃâÒßϸ°ûʶ±ðºÍɱÃðÖ×Áöϸ°û£¬²»Ê§ÎªÒ»ÖÖ¸»ÓÚÏëÏóÁ¦µÄÊֶΣ¬¶øÄÜ·ñÓÐÊÊÓüÛÖµÒÀÈ»ÔÚÓÚ¸ÃÒªÁìÓÐÓÃÐÔÓжàÇ¿ÒÔ¼°Ê¹ÓÃʱµÄÇå¾²ÐÔ¡£¼´±ã²»¿ÉÉú³¤³ÉΪһÖÖ¸ßЧµÄÖÎÁư©Ö¢µÄÒªÁ죬ËüÕÕ¾ÉÌṩÁËÒ»ÖÖ˼Ð÷£¬¼´ÊÇ·ñ¿ÉÄܽ«ÄÑÖÎÐÔÖÂÃü¼²²¡Í¨¹ý·ÇͨÀýÊÖ¶Îת±äΪÈÝÒ×´¦Öóͷ£µÄÎÊÌâÀ´½â¾ö¡£
¡¾ÔÎÄժ¼¡¿Sci. Transl. Med. 2, 44ra57 (2010). DOI: 10.1126/scitranslmed.3000739
Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity
F. Saccheri, C. Pozzi, F. Avogadri, S. Barozzi, M. Faretta, P. Fusi, M. Rescigno.
Antigen-presenting dendritic cells (DCs) trigger the activation of cytotoxic CD8 T cells that target and eliminate cells with the antigen on their surface. Although DCs usually pick up and process antigens themselves, they can also receive peptide antigens from other cells via gap junctions. We demonstrate here that infection with Salmonella can induce, in both human and murine melanoma cells, the up-regulation of connexin 43 (Cx43), a ubiquitous protein that forms gap junctions and that is normally lost during melanoma progression. Bacteria-treated melanoma cells can establish functional gap junctions with adjacent DCs. After bacterial infection, these gap junctions transferred preprocessed antigenic peptides from the tumor cells to the DCs, which then presented those peptides on their surface. These peptides activated cytotoxic T cells against the tumor antigen, which could control the growth of distant uninfected tumors. Melanoma cells in which Cx43 had been silenced, when infected in vivo with bacteria, failed to elicit a cytotoxic antitumor response, indicating that this Cx43 mechanism is the principal one used in vivo for the generation of antitumor responses. The Cx43-dependent cross-presentation pathway is more effective than standard protocols of DC loading (peptide, tumor lysates, or apoptotic bodies) for generating DC-based tumor vaccines that both inhibit existing tumors and prevent tumor establishment. In conclusion, we exploited an antimicrobial response present in tumor cells to activate cytotoxic CD8 T cells specific for tumor-generated peptides that could directly recognize and kill tumor cells.
2. ¼¹ËèËðÉËСÊóÀÖ³ÉÔÙÉúÉñ¾Í¨Â·
¡¾ÕªÒª¡¿¿Æ¼¼ÈÕ±¨ 2010-8-10 11:59:52
¡¡¡¡½üÆÚ£¬Ñо¿Ö°Ô±Ê×´ÎÓÕµ¼¼¹ËèÊÜËðµÄСÊóÔÙÉú³ö¿É¿ØÖÆ×ÔÖ÷Ðж¯µÄÉñ¾Í¨Â·£¬ÕâһЧ¹ûÓÐÍû¿ª·¢³öÖÎÁÆÌ±»¾ºÍÆäËûÔ˶¯¹¦Ð§ÐÔÕϰµÄÐÂÒªÁì¡£Ïà¹ØÂÛÎĽÒÏþÓÚ¡¶×ÔÈ»•Éñ¾¿ÆÑ§¡·ÔÓÖ¾¡£ÔÚ¶ÔСÊóµÄÑо¿ÖУ¬ÃÀ¹ú¼ÓÖÝ´óѧŷÎÄ·ÖУ¡¢¼ÓÖÝ´óѧʥµØÑǸç·ÖУºÍ¹þ·ð´óѧÍŽá×é³ÉµÄÑо¿ÍŶÓͨ¹ýÄæ×ªÒ»¸ö·Ö×ÓͨµÀÖеÄÉúÎïÖÓ¶ø»ñµÃÁËÕâÏîÍ»ÆÆ£¬¸Ã·Ö×ÓͨµÀ¹ØÓÚÆ¤Öʼ¹ËèÊøÉñ¾Í¨Â·¶øÑÔºÜÊÇÒªº¦¡£ËûÃÇÌÞ³ýÁËÒ»ÖÖÃûΪPTEN£¨Í¬Ô´ÐÔÁ×Ëáø-ÕÅÁ¦ÂѰף©µÄø£¬ÕâÖÖø¿ØÖƵķÖ×ÓͨµÀ½Ð×ömTOR£¬ÊÇϸ°ûÉú³¤µÄÒªº¦µ÷ÀíÆ÷¡£ÔÚ·¢Óý³õÆÚ£¬PTENµÄ»îÐԺܵͣ¬Ï¸°ûÔöÖ³²»ÊÜÓ°Ï죻µ±·¢ÓýÍê³Éʱ£¬PTEN¾Í»á¹Ø±Õ£¬ÒÖÖÆmTOR·Ö×ÓͨµÀ£¬Ï¸°ûÒ²»áʧȥÈκÎÔÙÉúÄÜÁ¦¡£¡°ÔÚ´Ë֮ǰ£¬ÔÆÔÆÇ¿Ê¢µÄÉñ¾ÔÙÉú²»¿ÉÄÜÔÚ¼¹ËèÖзºÆð£¬¡±¼ÓÖÝ´óѧŷÎÄ·ÖУÀï·ò-Å·ÎÄÑо¿ÖÐÐÄÈÏÕæÈË¡¢ÆÊ½âѧºÍÉñ¾ÉúÎïѧ½ÌÊÚ˹ͼ¶ûÌØËµ£¬¡°Ì±»¾ºÍÒò¼¹ËèËðÉ˵¼ÖµĹ¦Ð§Ëðʧһֱ±»ÒÔΪÊÇÎÞÒ©¿ÉÒ½µÄ£¬µ«ÎÒÃǵÄÑо¿·¢Ã÷Ö¸Ã÷ÎúÒ»ÖÖDZÔÚµÄÖÎÁÆÒªÁ죬¼´ÓÕµ¼¼¹ËèÊÜÉË»¼ÕßÌåÄÚµÄÉñ¾Í¨Â·ÔÙÉú¡£¡±Æ¾Ö¤¿ËÀï˹Íи¥ºÍµ¤ÄÉ•Àû·ò»ù½ð»áÌṩµÄÊý¾Ý£¬Ô¼ÄªÓÐ2%µÄÃÀ¹úÈËÒò¼¹ËèËðÉ˶ø·ºÆðijÖÖÐÎʽµÄ̱»¾£¬ÕâÖ÷ÒªÊÇÓÉÓÚÅþÁ¬´óÄԺͼ¹ËèµÄÉñ¾Í¨Â·ÖÐÖ¹µ¼Öµġ£Ò»Á£ÆÏÌѾÞϸµÄËðÉ˾Ϳɵ¼ÖÂËðÉËÃæÒÔÏµĹ¦Ð§ËùÓÐËðʧ¡£ºÃ±È£¬¾±²¿µÄËðÉË¿ÉÖ¸첲ºÍÍÈ̱»¾£¬¼ç²¿ÒÔϸÐ֪ȫÎÞ£¬¾Þϸ±ãʧ½û£¬ÐÔ¹¦Ð§Ëðʧ£¬ÒÔ¼°Ò»ÏµÁдμ¶¿µ½¡Î£º¦£¬°üÀ¨ÃÚÄòϵͳѬȾ£¬ÓÉÓÚÎÞ·¨Òƶ¯Ë«ÍȶøÉú³öÈì´¯ºÍѪ˨µÈ¡£Ë¹Í¼¶ûÌØËµ£º¡°ÈôÊÇÄܹ»ÕÒµ½Ò»¸öÒªÁìÈÃÕâЩÔâµ½ÆÆËðµÄͨ·ÔÙÉú£¬ËùÓÐÕâЩËðʧµÄ¹¦Ð§¶¼¿ÉÒÔ»Ö¸´¡£¡±ËûºÍͬÊÂÃÇÕýÔÚÑо¿PTENȱʧÁÆ·¨ÄÜ·ñÈü¹ËèËðÉ˵ÄСÊó»Ö¸´ÏÖʵÔ˶¯¹¦Ð§£¬²¢½øÒ»²½Ïàʶ×î¼ÑµÄÖÎÁÆÊ±¼ä£¬Í¬Ê±ÊÔͼΪ¸ÃÁÆ·¨¿ª·¢Ò»Ì×Ò©ÎïÔËËÍϵͳ¡£
¡¾µãÆÀ¡¿
¡¡¡¡Í¨¹ýÌÞ³ýPten»ùÒò£¬Ê¹¼¹ËèÉñ¾Ï¸°û»Øµ½ÀàËÆ·¢Óý³õÆÚµÄ״̬´Ó¶ø»Ö¸´ÔÙÉúÄÜÁ¦£¬ÐÞ¸´ËðÉ˵ÄÉñ¾Í¨Â·¡£Õ½ÂԺܺã¬Ö»ÊÇÏÖÔÚ»¹Ö»ÔÚСÊóÊÔÑéÖÐÊӲ쵽Éñ¾Ï¸°ûµÄÔÙÉú£¬ÄÜ·ñ»Ö¸´Ð¡ÊóµÄÏÖʵÔ˶¯¹¦Ð§²»ÇåÎú¡£²¢ÇÒ£¬ÔõÑùʵÏÖÌåÄÚ¼¹ËèÉñ¾Ï¸°ûµÄPten»ùÒòÌÞ³ý»òĬȻÊÇÁíÒ»¸öÖØ´óÌôÕ½¡£
¡¾ÔÎÄժ¼¡¿Nature Neuroscience doi:10.1038/nn.2603
PTEN deletion enhances the regenerative ability of adult corticospinal neurons
Kai Liu,Yi Lu,Jae K Lee, et al.
Despite the essential role of the corticospinal tract (CST) in controlling voluntary movements, successful regeneration of large numbers of injured CST axons beyond a spinal cord lesion has never been achieved. We found that PTEN/mTOR are critical for controlling the regenerative capacity of mouse corticospinal neurons. After development, the regrowth potential of CST axons was lost and this was accompanied by a downregulation of mTOR activity in corticospinal neurons. Axonal injury further diminished neuronal mTOR activity in these neurons. Forced upregulation of mTOR activity in corticospinal neurons by conditional deletion of Pten, a negative regulator of mTOR, enhanced compensatory sprouting of uninjured CST axons and enabled successful regeneration of a cohort of injured CST axons past a spinal cord lesion. Furthermore, these regenerating CST axons possessed the ability to reform synapses in spinal segments distal to the injury. Thus, modulating neuronal intrinsic PTEN/mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury.
3. ·¢Ã÷¹ÇËèÖÐÔìѪ¸Éϸ°ûÉú̬íèµÄÖ÷Òª³ÉÔ±
¡¾ÕªÒª¡¿
¡¡¡¡ÔÚ¹ÇËèÖÐÐγÉÔìѪ¸Éϸ°ûÉú̬íèµÄϸ°ûÉí·ÝÒ»Ö±²»ÇåÎú¡£ÏÖÔÚ£¬Paul Frenette¼°ÆäͬÊÂʶ±ð³ö£¬±í´ï³²ÂѰ×nestinµÄ¼ä³äÖʸÉϸ°ûΪÐγÉÉú̬íèµÄϸ°û¡£ÕâЩϸ°ûÓëÔìѪ¸Éϸ°ûÓÐÇ×½üÎïÀí¹ØÏµ£¬±í´ï¸ßˮƽµÄ¼ÓÈë¸Éϸ°ûά»¤µÄ»ùÒò£¬ËüÃǵÄɾ³ý»á½µµÍÔìÑª×æÏ¸°ûµÄ¹ÇËè¹é³²¹¦Ð§¡£ÕâÏîÊÂÇéÏÔʾ£¬¹ÇËèÖеĸÉϸ°ûÉú̬íèÊÇÁ½ÖÖ½ØÈ»²î±ðµÄÌå¸Éϸ°ûÀàÐÍÖ®¼äµÄÒ»ÖÖ»ï°é¹ØÏµ¡£
¡¾µãÆÀ¡¿
¡¡¡¡±í´ï³²ÂѰ׵ļä³äÖʸÉϸ°û±»·¢Ã÷ÔÚ×é³ÉÔìѪ¸Éϸ°ûµÄÉú̬íèºÍά»¤ÔìѪ¸Éϸ°û·½ÃæÆðÖ÷Òª×÷Ó᣹ØÓÚÑо¿ÔìѪ¸Éϸ°ûµÄÉúÃü¼ÍÂɺÍѪҺ²¡µÄÖÎÁÆÉϺܿÉÄÜÓÐÆð¾¢×÷Óá£
¡¾ÔÎÄժ¼¡¿Nature 466, 829-834 (12 August 2010) | doi:10.1038/nature09262
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
Sim¨®n M¨¦ndez-Ferrer, Tatyana V. Michurina, Francesca Ferraro, et al.
The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ¡®mesenspheres¡¯ that can self-renew and expand in serial transplantations. Nestin+ MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or ¦Â3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin+ cells and favours their osteoblastic differentiation, in vivo nestin+ cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin+ MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin+ cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
4. ϸ°ûÒò×ӽ鵼µÄÖ×ÁöÃâÒßÁÆ·¨
¡¾ÕªÒª¡¿
¡¡¡¡ÈËÌåÃâÒßϵͳÀֳɵؽø»¯£¬ÄÜÌÂÈûÐí¶à²¡ÔÌ塣ͨ¹ý½ÓÖÖÒßÃ磬ÎÒÃÇÄܹ»¼ÝÔ¦ºÍÔö½øÃâÒß·´Ó¦À´ìî³ýѬȾ²¡¡£Ö»¹ÜÔÆÔÆ£¬ÎÒÃÇ»¹Ö»ÊǸոÕ×îÏÈÏàʶÖ×Áö×ÔÈ»ÃâÒß¼àÊÓ»úÖÆÒÔ¼°ÎªÊ²Ã´ÓÐЩÇéÐÎÏÂÎÒÃǵÄÃâÒßϵͳ²»¿ÉÏû³ýÖ×ÁöµÄÉú³¤·¢Óý¡£±¾±à×ÛÊö»ØÊ×ÁË×î½üÔÚÕâÒ»ÁìÓò·ºÆðµÄ¹ÄÎèÈËÐĵÄÑо¿Ð§¹ûºÍÒ»Ö±À©Õ¹µÄÓйØÏ¸°ûÒò×ÓÓÕµ¼Ð§Ó¦ÒÔ¼°ÏÔʾ¸¨Öúϸ°ûÒò×ÓÖÎÁƺÜÓÐÏ£ÍûÔö½ø¿¹Ö×ÁöÃâÒßµÄÁÙ´²Ç°ºÍÁÙ´²Êý¾ÝµÈ·½ÃæµÄ֪ʶ¡£
¡¾µãÆÀ¡¿
¡¡¡¡ÌṩӦ¸÷È˹ØÓÚÖ×ÁöÃâÒßÁÆ·¨µÄһЩÐÂÏ£ÍûºÍÐÂÏ£Íû¡£
¡¾ÔÎÄժ¼¡¿Trends in Pharmacological Sciences, Volume 31, Issue 8, 356-363
Fighting cancers from within: augmenting tumor immunity with cytokine therapy
Marc Pellegrini, Tak W. Mak, Pamela S. Ohashi
The human immune system has successfully evolved to fight many pathogens. Through vaccination, we can harness and improve immune responses to eradicate infections. Despite this success, we are only now beginning to understand the natural tumor immune surveillance mechanisms and why, in some instances, our immune system fails to abrogate the development and growth of tumors. Encouraging results with the latest immunotherapies have renewed enthusiasm in the field. A central component of these therapies is the contribution of cytokines. Here we review our expanding knowledge of cytokine-induced effects as well as preclinical and clinical data that indicate adjuvant cytokine therapies may hold much promise in improving anti-tumor immunity. Further studies on optimal synergistic combinations, timing, duration and additional adjuvant therapies are required to realize the full potential of cytokines as immunotherapeutic agents.
5. ÐÇÐνºÖÊϸ°û¿Éת»¯ÎªÉñ¾Ï¸°û
¡¾ÕªÒª¡¿ÈªÔ´£º¡¶PLoSÉúÎïѧ¡· Ðû²¼Ê±¼ä£º2010-8-11 9:34:09
¡¡¡¡µÂ¹úĽÄáºÚ´óѧ¡¢º¥Ä·»ô×ÈĽÄáºÚÖÐÐÄ×é³ÉµÄÒ»¸öÑо¿Ð¡×é18ÈÕÐû²¼ÔÚÄÔϸ°ûÔÙÉúÑо¿·½ÃæÈ¡µÃÐÂÏ£Íû£ºÊ¹ÓÃÌØÊâµÄת¼Òò×Ó¿Éʹ´óÄÔÆ¤²ãµÄÐÇÐνºÖÊϸ°ûת»¯Îª¹¦Ð§ÐÔÉñ¾Ï¸°û¡£ÕâһЧ¹û½«ÓÐÖúÓÚÍíÄê³Õ´ôÖ¢»òÖзçµÈ¼²²¡µÄÐÂÁÆ·¨Ñо¿¡£Óɺ¥Ä·»ô×ÈĽÄáºÚÖÐÐĸÉϸ°ûÑо¿ËùËù³¤Âê¸ñ´ïÀ³ÄÈ•¸ñ´ÄÏòµ¼µÄÕâ¸öÑо¿Ð¡×éÔÚ×îÐÂÒ»ÆÚÃÀ¹ú¡¶¹«¹²¿ÆÑ§Í¼Êé¹Ý¡ªÉúÎïѧ¡·ÔÓÖ¾Éϱ¨¸æËµ£¬Í¨¹ýÑо¿Ö¤Êµ£¬ÔÚ´óÄÔÆ¤²ãµÄÐÇÐνºÖÊϸ°ûÖÐÖ²Èë¡°Neurogenin2¡±×ªÂ¼Òò×Ó¿ÉʹÐÇÐνºÖÊϸ°ûת±äΪÐË·ÜÐÔÉñ¾Ôª£¬ÔÚͬÑùµÄÐÇÐνºÖÊϸ°ûÖÐÖ²Èë¡°Dlx2¡±×ªÂ¼Òò×ÓÔò¿ÉʹÆäת±äΪÒÖÖÆÐÔÉñ¾Ôª¡£
ÐÇÐνºÖÊϸ°ûÊDz¸È鶯ÎïÄÔÄÚÂþÑÜ×îÆÕ±éµÄÒ»Ààϸ°û£¬Æä°ûÌå·¢³öµÄÐí¶à³¤¶ø·ÖÖ§µÄÍ»ÆðÊæÕ¹³äÌîÔÚÉñ¾Ï¸°ûµÄ°ûÌå¼°ÆäÍ»ÆðÖ®¼ä£¬ÆðÖ§³ÖºÍÍÑÀëÉñ¾Ï¸°ûµÄ×÷Óᣵ¹úÑо¿Ö°Ô±Ö¸³ö£¬ÐÇÐνºÖÊϸ°ûÓë·ÅÉä×´½ºÖÊϸ°ûÇ×½üÏà¹Ø£¬´ËºóÕßÔòÊÇÌ¥Åß·¢ÓýÀú³ÌÖдó´ó¶¼Éñ¾ÔªµÄǰÇýϸ°û¡£µÂÑо¿Ö°Ô±½øÒ»²½Ú¹ÊÍ˵£¬¸ñ´ÄÏòµ¼µÄÑо¿Ð¡×éÔÚ¼¸ÄêǰµÄÑо¿ÖÐÒÑ·¢Ã÷£¬ÔÚÓ×Êó´óÄÔÆ¤²ãÔÀ´²»¾ßÓÐÐγÉÉñ¾ÔªÄÜÁ¦µÄÐÇÐνºÖÊϸ°ûÖÐÖ²ÈëÌØÊâµÄµ÷ÀíÂѰף¬¿É´ÙʹÆäת±äΪÉñ¾Ôª¡£¶øËûÃǵÄ×îÐÂÑо¿ÔòÏÔʾ£¬ÐÂÐγɵÄÉñ¾ÔªÔÚÌØÊâת¼Òò×ÓµÄÓ°ÏìÏ¿ɽøÒ»²½ÐÎÀÖ³ÉÄÜÐÔÍ»´¥£¬ÊͷųöÐË·ÜÐÔ»òÒÖÖÆÐԵĵÝÖÊ¡£²»µ«»¹ÔÚ·¢ÓýµÄÐÇÐνºÖÊϸ°û±¬·¢×ª±ä£¬²¢ÇÒÒòÊÜËð¶ø±»¼¤»îµÄ³ÉÊì´óÄÔÖеÄÐÇÐνºÖÊϸ°ûÒ²Äܱ¬·¢ÕâÖÖת±ä¡£ÕâÒ»·¢Ã÷ʹÑо¿Ö°Ô±ÏàÐÅÓÐÍûÕÒµ½ÓÃÄÔÖÐÏÖÓеÄÐÇÐνºÖÊϸ°û¡°¸üС±ÒòÉË»ò¼²²¡¶øÊÜËðµÄÄÔϸ°ûµÄÒªÁì¡££¨ÈªÔ´£ºÐ»ªÉç¡¡°àç⣩
¡¾µãÆÀ¡¿
ͨ¹ý»ùÒòÊÖÒÕÖ±½ÓˢкÍת±ä×é֯ϸ°ûÀàÐ͵ÄÀý×Ó¡£¹ØÓÚÌåÍâÔÙÉúÉñ¾Ï¸°ûµÄÑо¿Óвο¼¼ÛÖµ£¬µ«ÏÖÔÚ¿´²»³öÓÐÈκÎÖÎÁÆÉϵÄÊÊÓüÛÖµ¡£
¡¾ÔÎÄժ¼¡¿PLoS Biol 8(5): e1000373. doi:10.1371/journal.pbio.1000373
Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons.
Heinrich C, Blum R, Gasc¨®n S, et al.
Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation.