ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨¶þÊ®Î壩
£¨ 09.20 --09.26 / 2010 £©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
¡¡¡¡±¾Öܶ¯Ì¬°üÀ¨ÒÔÏÂÄÚÈÝ£º ·¢Ã÷ÓÐÍûÔöÇ¿°©Ö¢ ·ÅÁÆÐ§¹ûµÄ °û½¬ÐÍÁ×֬ø A2 £» °ÐÏòÔËËÍ»¯ÁÆÒ©ÎïµÄÄ˽×ÔØÌ壻 ¼ì²âÈËÌåÉúÎïÖӵļòÆÓÒªÁ죻 Gfi1b ÂѰ׵÷Àí¹ÇËè ¸Éϸ°ûµÄ»îÐÔ£»¶ËÁ£Í¨¹ý Cdc13 ÂѰ×ÕÐļ¶ËÁ£Ã¸Î¬³Ö×ÔÉí³¤¶È ¡£
1. ·¢Ã÷ÓÐÍûÔöÇ¿°©Ö¢ ·ÅÁÆÐ§¹ûµÄ °û½¬ÐÍÁ×֬ø A2
¡¾ÕªÒª¡¿
¡¡¡¡ÃÀ¹úʥ·Ò×˹»ªÊ¢¶Ù´óѧҽѧԺµÄ¿ÆÑ§¼ÒÃÇ¿ËÈÕ·¢Ã÷ÁËÒ»ÖÖеÄÒ©Îï°Ðµã£¬ÓÐÍû×ÊÖúÔöÇ¿Íç¹Ì°©Ö¢µÄ·ÅÉäÖÎÁÆÐ§¹û¡£Ñо¿Ð§¹û½ÒÏþÓÚÃÀ¹ú¡¶¹úÁ¢°©Ö¢Ñо¿ËùÆÚ¿¯¡·¡£
¡¡¡¡¸ÃÒ©Îï°ÐµãΪ°û½¬ÐÍÁ×֬ø A2 £¨ cPLA2 £©£¬Äܹ»µ¼ÖÂѪҺ¶ñÐÔÖ×ÁöÉú³¤£¬²¢½µµÍ·ÅÉäÖÎÁƵÄÁÆÐ§¡£¡°ÎÒÃÇ×î³õµÄÏë·¨ÊÇÕÒ³öÄÇЩ´Ùʹ·Î°©ºÍÄÔ°©¶Ô·ÅÉäÁÆ·¨±¬·¢ÇãÔþ×÷ÓõÄÐźŷÖ×Ó¡±£¬ÎÄÕµÄÖ÷Òª×÷Õß Dennis Hallahan ³Æ£¬¡°ÎÒÃÇ×¢ÖØµ½£¬ÔÚ×îÏȶÔÖ×Áöϸ°û¾ÙÐзÅÉäÐÔÖÎÁƲ»µ½Á½·ÖÖÓÄÚ£¬¾ÍÓÐ cPLA2 ±¬·¢£¬²¢Ê¹Ö×Áö¶Ô·ÅÉäÁÆ·¨±¬·¢µÖÖÆ¡±¡£
¡¡¡¡Ñо¿Ö°Ô±ÓÉ´ËÒâʶµ½£¬ÈôÊÇÒÖÖÆ cPLA2 £¬»òÔÊÐíÒÔ¼Ó´ó·ÅÉäÁÆ·¨ÖÎÁƷΰ©ºÍÄÔ°©µÄÁÆÐ§¡£ÓÚÊÇËûÃÇÔÚÕý³£Ð¡ÊóÌåÄÚºÍÈ¥³ýÁË cPLA2 ±¬·¢ÄÜÁ¦µÄСÊóÌåÄÚ»®·ÖÖ²ÈëÖ×Áö£¬È»ºó¶ÔÆä¾ÙÐзÅÉäÁÆ·¨£¬²¢½ÏÁ¿Á½ÕßÁÆÐ§¡£¡°Í¨¹ýʵÑéÎÒÃÇ·¢Ã÷£¬Õý³£Ð¡ÊóÌåÄÚµÄÖ×ÁöÈÔÈçÔ¤Ïë°ãµÄÉú³¤£¬µ«ÔÚÎÞ·¨±¬·¢ cPLA2 µÄСÊóÌåÄÚÏÕЩ¼ì²â²»µ½Ö×Áö¡£¡± Hallahan ˵¡£
¡¡¡¡½ô½Ó×Å£¬Ñо¿Ö°Ô±¶Ô»ùÒòË¢ÐÂСÊó¾ÙÐÐÁËѪ¹Ü¼ì²é£¬·¢Ã÷Ѫ¹Ü×Ô¼ºÃ»ÓÐÈκÎÒì³££¬¶ø¸ü½øÒ»²½µÄ¼ì²âÏÔʾ£¬¿ØÖÆÑªÒºÁ÷¶¯µÄÒ»ÖÖ¿ÉËõ¶Ìϸ°û²»¸´±£´æÁË¡£¡°È±ÉÙÕâÖÖϸ°û£¬Ñª¹ÜÈÔÈ»¿ÉÒÔÔÚÖ×ÁöÖÐÉú³¤£¬µ«ÑªÒºÎÞ·¨Á÷¾Ö×ÁöÁË¡±£¬ Hallahan ³Æ£¬¡°ÕâÒâζ×Ű©Ï¸°û½«µÃ²»µ½ÓªÑø¶øÎÞ·¨´æ»î¡±¡£
¡¡¡¡Ñо¿Ö°Ô±ÒÑÕÒµ½Ò»ÖÖÏֳɵÄÒ©Îï¿É¶Ô cPLA2 ±¬·¢ÒÖÖÆ×÷Óã¬ÏÖÔÚ¸ÃÒ©ÎïÒѾ½øÈëµÚ¶þÆÚ²âÊÔ¡£½ÓÏÂÀ´£¬ËûÃǽ«½øÒ»²½Ñо¿ cPLA2 µÄ×÷ÓûúÀí£¬²¢¶Ô¸ÃÒÖÖÆÒ©ÎïµÄЧ¹û×÷³öÆÀ¼Û¡££¨ÈªÔ´ : ¿ÆÑ§Íø ÕÅЦ£©
¡¾µãÆÀ¡¿
¡¡¡¡×÷ΪÏÖÔÚµÄÈý´ó°©Ö¢ÖÎÁÆÊÖ¶ÎÖ®Ò»£¬·ÅÁƵÄΣº¦ºÍÊÕÒæÒ»Ö±ÊǸöÄÑÌ⣬ÈôÊÇÓпÉÒÔÌá¸ß·ÅÁÆÐ§¹ûµÄÒªÁ죬¹ØÓÚ½µµÍÆä¼ÁÁ¿¼õÇá¶ÔÉíÌåÕý³£×éÖ¯µÄËðº¦ÓÐÀûÒæ¡£ °û½¬ÐÍÁ×֬ø A2 µÄ·¢Ã÷»òÐí»áÔÚÕâ·½ÃæÓÐ×ÊÖú¡£
¡¾ÔÎÄժ¼¡¿
J Natl Cancer Inst (2010) doi: 10.1093/jnci/djq290
Cytosolic Phospholipase A2 and Lysophospholipids in Tumor Angiogenesis
Amanda G. Linkous , Eugenia M. Yazlovitskaya and Dennis E. Hallahan
Abstract
¡¡¡¡Background Lung cancer and glioblastoma multiforme are highly angiogenic and, despite advances in treatment, remain resistant to therapy. Cytosolic phospholipase A2 (cPLA 2 ) activation contributes to treatment resistance through transduction of prosurvival signals. We investigated cPLA 2 as a novel molecular target for antiangiogenesis therapy.
¡¡¡¡Methods Glioblastoma (GL261) and Lewis lung carcinoma (LLC) heterotopic tumor models were used to study the effects of cPLA 2 expression on tumor growth and vascularity in C57/BL6 mice wild type for (cPLA 2 ¦Á +/+ ) or deficient in (cPLA 2 ¦Á −/− ) cPLA 2 ¦Á, the predominant isoform in endothelium (n = 6¨C7 mice per group). The effect of inhibiting cPLA 2 activity on GL261 and LLC tumor growth was studied in mice treated with the chemical cPLA 2 inhibitor 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1 H -indol-3-yl]-ethoxy]benzoic acid (CDIBA). Endothelial cell proliferation and function were evaluated by Ki-67 immunofluorescence and migration assays in primary cultures of murine pulmonary microvascular endothelial cells (MPMEC) isolated from cPLA 2 ¦Á +/+ and cPLA 2 ¦Á −/− mice. Proliferation, invasive migration, and tubule formation were assayed in mouse vascular endothelial 3B-11 cells treated with CDIBA. Effects of lysophosphatidylcholine, arachidonic acid, and lysophosphatidic acid (lipid mediators of tumorigenesis and angiogenesis) on proliferation and migration were examined in 3B-11 cells and cPLA 2 ¦Á −/− MPMEC. All statistical tests were two-sided.
¡¡¡¡Results GL261 tumor progression proceeded normally in cPLA 2 ¦Á +/+ mice, whereas no GL261 tumors formed in cPLA 2 ¦Á −/− mice. In the LLC tumor model, spontaneous tumor regression was observed in 50% of cPLA 2 ¦Á −/− mice. Immunohistochemical examination of the remaining tumors from cPLA 2 ¦Á −/− mice revealed attenuated vascularity ( P ¡Ü .001) compared with tumors from cPLA 2 ¦Á +/+ mice. Inhibition of cPLA 2 activity by CDIBA resulted in a delay in tumor growth (eg, LLC model: average number of days to reach tumor volume of 700 mm 3 , CDIBA vs vehicle: 16.8 vs 11.8, difference = 5, 95% confidence interval = 3.6 to 6.4, P = .04) and a decrease in tumor size (eg, GL261 model: mean volume on day 21, CDIBA vs vehicle: 40.1 vs 247.4 mm 3 , difference = 207.3 mm 3 , 95% confidence interval = 20.9 to 293.7 mm 3 , P = .021). cPLA 2 deficiency statistically significantly reduced MPMEC proliferation and invasive migration ( P = .002 and P = .004, respectively). Compared with untreated cells, cPLA 2 ¦Á −/− MPMEC treated with lysophosphatidylcholine and lysophosphatidic acid displayed increased cell proliferation ( P = .011) and invasive migration ( P < .001).
¡¡¡¡Conclusions In these mouse models of brain and lung cancer, cPLA 2 and lysophospholipids have key regulatory roles in tumor angiogenesis. cPLA 2 inhibition may be a novel effective antiangiogenic therapy.
2. °ÐÏòÔËËÍ»¯ÁÆÒ©ÎïµÄÄ˽×ÔØÌå
¡¾ÕªÒª¡¿
¡¡¡¡±±¾©Ê±¼ä 9 Ô 23 ÈÕÐÂÎÅ£¬¾ÝÎïÀíѧ¼Ò×éÖ¯Íø±¨µÀ£¬»¯ÁÆÊÇÄ¿½ñÖÎÁư©Ö¢µÄÒ»ÖÖÓÐÓÃÒªÁ죬²»¹ýËüÒ²±£´æÒ»Ð©²»Á¼¸±×÷Óã¬ÀýÈç¶ñÐÄ·´Î¸¡¢¸Î¶¾ÐÔºÍÃâÒßϵͳ¹¦Ð§Ï½µµÈ¡£ÌØÀά·ò´óѧµÄµ¤¡¤Æ¤¶û¡¢ÀûĪÄÉ¡¤Âí¸ñÀûÌØºÍͬÊÂÃÇÒѾÑо¿³öÒ»ÖÖ¿ÉÒÔÖ±½Ó°Ñ»¯ÁÆÒ©ÎïÔËË͵½°©Ï¸°û£¬×èÖ¹Ó뿵½¡Ï¸°û±¬·¢»¥¶¯µÄ¡°ÄÉÃ׳µ¡±£¬ÕâÖÖÒªÁì¿ÉÔÚÔöÌí»¯ÁÆÐ§¹ûµÄͬʱïÔ̸±×÷Óá£
¡¡¡¡Æ¤¶ûÚ¹ÊÍ˵£º¡°ÕâÖÖÔØ¾ß¾ÍÏñ¼¯ÊøÕ¨µ¯¡£¡±ÔÚÄÉÃ׳µµÄÄÚÀïÊÇЯ´ø×Å»¯ÁÆÒ©ÎïµÄÄÉÃ×Á£×Ó£¬Ëü¿ÉÒÔ°ÑÕâЩ»¯ÁÆÒ©ÎïÖ±½ÓÊͷŵ½°©Ï¸°ûÀï¡£¾ÝƤ¶ûÏÈÈÝ£¬ÕâÖÖÄÉÃ×Á£×ÓÔØ¾ß¿ÉÒÔÓÃÀ´ÖÎÁƶàÖÖ²î±ðÀàÐ͵ݩ֢£¬ÀýÈç·Î°©¡¢Ñª°©¡¢½á³¦°©¡¢ÈéÏÙ°©¡¢×Ó¹¬°©¡¢ÒÈÏÙ°©£¬ÉõÖÁ¼¸ÖÖÀàÐ͵ĴóÄÔÖ×Áö¡£ÓйØÕâÖÖÐÂÄÉÃ×Á£×Ó¼°ÆäÔÚÖ×ÁöÖÎÁÆ·½ÃæµÄÓ¦ÓõÄÂÛÎÄ£¬½ÒÏþÔÚ¡¶ÉúÎïÖÊÁÏ¡·£¨ Biomaterials £©ÔÓÖ¾ÉÏ¡£
¡¡¡¡ÕâÖÖÒ©ÎïÔËËÍÆ½Ì¨µÄÒªº¦ÊÇÓÃÀ´ÖÆÔìÕâÖÖ¼¯ÊøÄÉÃ×Á£×ÓµÄÍâ¿ÇµÄ·Ö×Ó¡ª¡ªÍ¸Ã÷ÖÊËá (Hyaluronan) ¡£ ͸Ã÷ÖÊËáÊÇÒ»Öֿɱ»Ðí¶àÀàÐ͵ݩϸ°ûµÄÊÜÌåʶ±ðµÄÌÇ·Ö×Ó ¡£Æ¤¶û˵£º¡°µ±Ä˽×ÔØÌåÓ방ϸ°ûµÄÊÜÌ屬·¢»¥¶¯Ê±£¬ÊÜÌå»á±¬·¢½á¹¹×ª±ä£¬»¯ÁÆÒ©Îï»á±»Ö±½ÓÊͷŵ½°©Ï¸°ûÀï¡£¡±ËûÚ¹ÊÍ˵£¬ÕâÒ»Ñо¿Ð§¹û°Ñ»¯ÁƵĸü¶à×¢ÖØÁ¦¼¯ÖÐÔÚ¶Ô¿¹²¡±äϸ°ûÉÏ¡£
¡¡¡¡ÓÉÓÚÄÉÃ×Á£×ÓÖ»¶Ô°©Ï¸°ûÆð·´Ó¦£¬Òò´ËÖÜΧµÄ¿µ½¡Ï¸°û²»»áÊܵ½»¯ÁƵÄÓ°Ïì ¡£Æ¤¶ûÌåÏÖ£¬ ÕâÖÖÄÉÃ׳µ×Ô¼ºÊÇÓÃ×ÔÈ»ÓÍÖ¬·Ö×ÓÖÆ³ÉµÄ£¬ÄÉÃ×Á£×Ó±¬·¢×÷Óú󣬻áÔÚÌåÄÚ×ÔÐÐÆÊÎö £¬Òò´ËÕâÖÖÁÆ·¨±ÈÄ¿½ñµÄ»¯ÁÆÒªÁì¸üÇå¾²¡£Í¨¹ý»¼Ö×ÁöµÄÀÏÊó¾ÙÐеÄÊÔÑé·¢Ã÷£¬ÓÃ͸Ã÷ÖÊËá°ü¹ü¡¢ÆäÄÚ³äÂú×Ïɼ´¼µÄÄÉÃ×Á£×Ó£¬ÔÚ×èÖ¹Ö×ÁöÉú³¤·½Ãæ±È²»º¬×Ïɼ´¼ ( Я´ø×Å×Ïɼ´¼µÄÒ»ÖÖ°×ÂѰ×ÄÉÃ×Á£×Ó ) µÄÄÉÃ×Á£×Ó¸üÓÐÓᣣ¨ÈªÔ´£ºÐÂÀ˿Ƽ¼ ТÎÄ£©
¡¾µãÆÀ¡¿
¡¡¡¡Í¨¹ýÄÉÃ×ÊÖÒÕÉè¼Æ¾ßÓÐÌØÒìÑ¡ÔñÐÔµÄÒ©ÎïÔØÌ壬ÊÇÌá¸ß»¯ÁÆÒ©ÎïЧ¹û£¬½µµÍÆä¶Ô¿µ½¡Ï¸°ûºÍ×éÖ¯µÄΣº¦µÄÓÐÓÃÊֶΡ£
¡¾ÔÎÄժ¼¡¿ Biomaterials Volume 31, Issue 27 , September 2010, Pages 7106-7114
Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors
Ilia Rivkin, Keren Cohen, Jacob Koffler, Dina Melikhov, Dan Peer, Rimona Margalit
¡¡¡¡Paclitaxel (PTX) is a widely used anti-tumor agent in the treatment of solid tumors. Lack of selective strategies to target PTX into tumor cells together with poor solubility necessitating detergent, are severe clinical limitations. To address these hurdles, we devised a strategy that utilized PTX insolubility, mixing it with lipids that self-assemble into nanoparticle-like clusters. These clusters were then coated with hyaluronan, a glycosaminoglycan (GAG), and termed PTX-GAGs. These particles, delivered PTX selectively into tumor cells in a CD44-dependent manner. Injected systemically to mice bearing solid tumors, the PTX-GAGs showed high safety profile and tumor accumulation. Tumor progression was exponential upon treatment with free PTX or PTX in albumin nanoparticles (the FDA-approved Taxol ® and Abraxane ® , respectively). Under the same conditions, PTX-GAGs induced tumor arrest and were as potent as a 4-fold higher Taxol ® dose. Our findings suggest GAGs merit further investigation as vehicles for taxanes, and may be applicable as carriers in other therapeutic settings.
3. Ò»ÖÖ ¼ì²âÈËÌåÉúÎïÖӵļòÆÓÒªÁì
¡¾ÕªÒª¡¿
¡¡¡¡Í··¢Äܹ»×ÊÖú¿ÆÑ§¼Ò¼ì²âÈËÌåµÄÉúÎïÖÓÊÇ·ñÓëÈËÃǵÄ×÷Ϣʱ¼äÏàÒ»Ö ¡£×îеÄÒ»ÏîÑо¿·¢Ã÷£¬Í··¢µÄëÄÒÄܸú×ÙÈËÌåµÄÉúÎïÖÓ¡£ÕâÒ»·¢Ã÷»òÐíÄܹ»ÓÃÓÚÖÎÁÆË¯ÃßÔÓÂÒ¼²²¡£¬»òÕßÓÃÓÚÆÀ¹ÀÐèÒªµ¹Ò¹°àµÄ¹¤È˵Ŀµ½¡ÎÊÌ⡣֮ǰµÄÑо¿ÕßÒ»Ö±ÒÔΪ£¬ÈËÌåµÄÉúÎïÖÓÖ»±£´æÓÚ´óÄÔÖС£µ«ÔÚÉÏÊÀ¼Í 90 ÄêÔÂÄ©ÆÚ£¬¿ÆÑ§¼Ò·¢Ã÷ÁËÕÆ¹ÜÉúÎïÖӵĻùÒòÖ®ºó£¬ÈËÃDzÅ×îÏÈÏàÐÅ ÎÒÃÇÉíÌåÖеÄÿ¸ö²¿Î»¶¼±£´æ×ÅÉúÎïÖÓ ¡£ÓйØÉúÎïÖÓµÄʵÑ飬¶¼ÊÇÔÚÀÏÊóÉíÉϾÙÐеġ£ÈËÃÇÒѾ½«ÉúÎïÖÓ»ùÒòͬÌåÖØÔöÌí¡¢Îüʳ´óÂéÒýÆðµÄʱ¼äËðʧ¸ÐµÈÖ¢×´ÁªÏµÁËÆðÀ´¡£µ«»¹Ã»ÓÐÈËÄܹ»ÔÚÈËÉíÉÏÖ±½Ó×öʵÑé¡£ÕâÖ÷ÒªÊÇÓÉÓÚÒªÆÊÎöÕâЩ»ùÒò£¬ÐèÒª¾ÙÐÐһЩ¿ÉÄÜÒýÆðÈËÌåÍ´¿àµÄʵÑ飬ºÃ±ÈÒ»ÌìÖÐÒª³éÒ»ÔÙѪ£¬»òÕßÈ¡ÏÂÒ»¿éƤ·ôÀ´¾ÙÐл¯Ñé¡£
¡¡¡¡ ×î½ü£¬ÈÕ±¾É½¿Ú´óѧµÄ Makoto Akashi ºÍËûµÄͬÊÂÕÒµ½ÁËÒ»ÖÖ¼òÆÓµÄÒªÁìÑо¿ÈËÌåµÄÉúÎïÖÓÔ˶¯£¬ËûÃǰÑ×¢ÖØÁ¦¼¯Öе½ÁËÍ··¢ÉÏ¡£Ñо¿ÕßÏȺó»¯ÑéÁËÖØÐÂÆ¤»òÕß÷×ëÉϰÎÏÂÀ´µÄë·¢£¬ËüÃǺ¬Óдó×ÚµÄëÄÒϸ°û¡£ÔÚÌáÈ¡ÁËÕâЩϸ°ûÖÐµÄ RNA ºó£¬Ñо¿Õß·¢Ã÷µ±ÊÜÊÔÕߺÜÊÇËÕÐѵÄʱ¼ä£¬ÉúÎïÖÓ»ùÒòµÄÔ˶¯µÖ´ïÁËá¯Á룻¶øÄÇЩÔçÉÏÐÑÀ´×îÔçµÄ±»ÊÔÕߣ¬»ùÒòµÖ´ïá¯ÁëµÄʱ¼äÒ²×îÔç¡£½ÓÏÂÀ´£¬Ñо¿Ð¡×éÍ»ÆÆÁËһЩ¿µ½¡È˵Ä˯Ãß¼ÍÂÉ£¬ÊÓ²ìÉúÎïÖÓµÄת±äÇéÐΡ£ÔÚΪÆÚ 3 ÖܵÄʵÑéÖУ¬ÊÜÊÔÕß±»ÒªÇóÒ»Ìì±ÈÒ»Ìì˯µÃÍí£¬È»ºóÑо¿ÕßÔÚÊÜÊÔÕßÐÑÀ´µÄ°ëСʱºó¼ÓһСÎÒ˽¼Ò¹¤¹âÔ´À´Ä£ÄâÌ«Ñô¡£ÔÚ 3 ÖܵÄʵÑ鿢ʺó£¬ÊÜÊÔÕß±È×î×îÏȵÄʱ¼äÍí˯ÁË 4 ¸öСʱ£¬¶øÃ«ÄÒÖÐÉúÎïÖÓ»ùÒòµÄÔ˶¯Ò²ÏìÓ¦µØ±¬·¢ÁËת±ä£¬µ«Ö»ÍƳÙÁË 2.5 ¸öСʱ¡£Ñо¿Ö°Ô±½«ÕâһЧ¹û½ÒÏþÔÚ×îгöÊéµÄÃÀ¹ú¡¶¹ú¼Ò¿ÆÑ§ÔºÔº¿¯¡·ÉÏ¡£
¡¡¡¡Akashi µÄÑо¿Ð¡×éÒ²ÔÚÐèÒªÂÖ°àÊÂÇéµÄ¹¤ÈËÉíÉÏ·¢Ã÷ÁËͬÑùµÄÕ÷Ïó¡£ÕâЩÈËÐèÒªÔÚµÚÒ»ÖܵÄÔ糿 6 µãµ½ÏÂÖç 3 µãÉϰ࣬µÚ¶þÖÜÔòµ÷½âµ½ÏÂÖç 3 µãµ½ÎçÒ¹Éϰ࣬µÚÈýÖÜÔÙ±ä»ØÔ糿ÉϰࡣÑо¿Õß·¢Ã÷£¬ÉúÎïÖÓ»ùÒòµÄÔ˶¯±ÈÕâЩ¹¤È˵ÄÉúÑļÍÂÉÑÓ³ÙÁË 5 Сʱ֮¶à£¬Õâ˵Ã÷ 3 ÖܵÄʱ¼äȱ·¦ÒÔʹÈËÌåÉúÎïÖÓ˳ӦеÄÉúÑĽÚ×à¡£
ÈðÊ¿ÈÕÄÚÍß´óѧµÄÉúÎïѧ¼Ò Ueli Schibler ÌåÏÖ£¬Í¨¹ýëÄÒÀ´¸ú×ÙÉúÎïÖÓµÄÔ˶¯£¬Äܹ»×ÊÖú¿ÆÑ§¼Ò¸üºÃµØ¼à²â»¼ÕßµÄ˯ÃßÔÓÂÒ»òÆäËûÉúÎïÖÓ½ÚÂÉʧµ÷Ö¢×´¡£ÓÉÓÚÕâЩ»ùÒòÄܹ»¿ØÖÆÈËÌåµÄÐí¶àÐÄÀíÔ˶¯£¬ºÃ±ÈÆ÷¹ÙµÄÕý³£ÔËת¡¢Ïû»¯Ô˶¯µÈ£¬Õâ¸öÑо¿Ð§¹û»òÐíÄܹ»×ÊÖúÈËÃÇÚ¹ÊÍÐí¶àÓÉÉúÎïÖÓÒýÆðµÄ¿µ½¡ÎÊÌâ¡££¨ÈªÔ´£º¿ÆÑ§Ê±±¨ ¶¡¼Ñ£©
¡¾µãÆÀ¡¿
¡¡¡¡Í¨¹ý¼ì²âëÄÒϸ°ûÉúÎïÖÓ»ùÒòµÄ±í´ï¸ú×ÙÈËÌåÉúÎïÖÓµÄÔ˶¯£¬¼à²âÉúÎïÖÓ½ÚÂɵļÍÂÉ£¬¹ØÓÚÑо¿ÉúÎïÖÓ¶Ô¿µ½¡µÄÓ°ÏìÒÔ¼°ÔõÑùµ÷ÀíÉúÑĽÚ×à¶¼ÊÇÓÐ×ÊÖúµÄ¡£²¢ÇÒʹÓÃÍ··¢»ò÷×ëµÄ뱬·¢Îª¼ì²âÑù±¾£¬Î£ÏÕСÓÖ¼òÆÓ¿É¿¿¡£
¡¾ÔÎÄժ¼¡¿ PNAS vol. 107 no. 35: 15643-15648
Noninvasive method for assessing the human circadian clock using hair follicle cells
Makoto Akashi , Haruhiko Soma , Takuro Yamamoto , et al.
¡¡¡¡A thorough understanding of the circadian clock requires qualitative evaluation of circadian clock gene expression. Thus far, no simple and effective method for detecting human clock gene expression has become available. This limitation has greatly hampered our understanding of human circadian rhythm. Here we report a convenient, reliable, and less invasive method for detecting human clock gene expression using biopsy samples of hair follicle cells from the head or chin. We show that the circadian phase of clock gene expression in hair follicle cells accurately reflects that of individual behavioral rhythms, demonstrating that this strategy is appropriate for evaluating the human peripheral circadian clock. Furthermore, using this method, we indicate that rotating shift workers suffer from a serious time lag between circadian gene expression rhythms and lifestyle. Qualitative evaluation of clock gene expression in hair follicle cells, therefore, may be an effective approach for studying the human circadian clock in the clinical setting.
4. Gfi1b ÂѰ׵÷Àí¹ÇËè ¸Éϸ°ûµÄ»îÐÔ
¡¾ÕªÒª¡¿ ȪԴ£º¡¶ÑªÒº¡· Ðû²¼Ê±¼ä£º 2010-9-26 13:31:26
¡¡¡¡¼ÓÄôóÃÉÌØÀû¶ûÓÐÊý¼²²¡Ñо¿Ëù£¨ IRCM £©ÔìѪÓë°©Ö¢Ñо¿²¿·ÖÈÏÕæÈË Tarik Möröy ²©Ê¿ºÍËûÏòµ¼µÄ¿ÆÑÐС×éÔÚÃÀ¹úѪҺѧлáµÄ¡¶ÑªÒº¡·£¨ Blood £©ÆÚ¿¯ÉϽÒÏþÂÛÎijÆËûÃÇ·¢Ã÷ÁËÒ»ÖÖ ¿Éµ÷¿ØÔìѪ¸Éϸ°ûÌØÕ÷µÄÂÑ°× £¬ÓпÉÄܳÉΪ°×Ѫ²¡ÖÎÁƵÄае㡣ÔìѪ¸Éϸ°ûÒÆÖ²ÏÖÔÚ±»ÆÕ±éÓ¦ÓÃÓÚ¶ñÐÔѪҺ²¡¡¢·Ç¶ñÐÔÄÑÖÎÐÔѪҺ²¡¡¢ÒÅ´«ÐÔ¼²²¡ºÍijЩʵÌåÁöÖÎÁÆ¡£¡°ÔìѪ¸Éϸ°ûÄÜʹ°×Ѫ²¡»¼ÕßµÄÔìÑªÏµÍ³ÖØÐ»ָ´ÌìÉúѪϸ°û°üÀ¨°×ϸ°û¡¢ºìϸ°û¼°ÑªÐ¡°å£¬¡± Möröy ²©Ê¿Ëµ¡£°×Ѫ²¡»òÆäËûÄÑÖÎÐÔѪҺ²¡µÄ»¼Õß×î³õÒª½ÓÊÜ»¯ÁÆ£¬ÆÆËð×ÔÉíµÄÔìѪϵͳͬʱɨ³ýÌåÄÚµÄÒ쳣ϸ°û¡£ÔìѪ¸Éϸ°ûͨ³£Í¨¹ýÁ½ÖÖ²î±ðµÄ·½·¨ÓÃÓÚÖÎÁÆ¡£µÚÒ»ÖÖÊÇ»¯ÁÆÇ°´Ó»¼Õß´¦»ñµÃÔìѪ¸Éϸ°û£¬»¯ÁƺóÔÙ½«×ÔÌå¸Éϸ°ûÒÆÖ²¸ø»¼Õß³ÆÖ®ÎªÖØÖÆ×÷Ѫϸ°û¡£ Khandanpour ˵£º¡°ÕâÖÖÖÎÁÆÒªÁìµÄÒ»¸öÖ÷ÒªÎÊÌâÊÇ´Ó¹ÇËèºÍÍâÖÜѪ»ñµÃµÄÔìѪ¸Éϸ°ûͨ³£´¦ÓÚÐÝÃß״̬¡£ÎªÁË»ñµÃ×ã¹»ÊýÄ¿µÄ¸Éϸ°û£¬²»µÃ²»½«¹ÇËèÖеÄÔìѪ¸Éϸ°û·¢¶¯Êͷŵ½ÑªÒºÖвÅÈÝÒ×±»ÍøÂç¡£¡±
¡¡¡¡µÚ¶þÖÖÒªÁìÊÇ´Ó¿µ½¡¹©Ìå´¦»ñµÃÔìѪ¸Éϸ°û£¬ÔÚ»¯Áƺó½«ËüÃÇÒÆÖ²µ½»¼ÕßÌåÄÚ¡£Í¨¹ýÍâԴϸ°ûÖØÐÞ»¼ÕßÔìѪϵͳ±¬·¢ÑªÏ¸°û¡£¡°¿ÉÊÇÕâÖÖÖÎÁÆÍ¨³£ÓÐ 10-20% µÄʧ°Ü»úÂÊ¡£ÓÉÓÚijЩԵ¹ÊÔÓɻᵼÖÂÒÆÖ²µÄÔìѪ¸Éϸ°ûÎÞ·¨¿ìËÙÌìÉúеÄѪϸ°û£¬´Ó¶øÒýÆð»¼Õß±¬·¢Ñ¬È¾ºÍéæÃü¡£¡± Khandanpour ²©Ê¿Ëµ¡£¡°ÎÒÃÇ·¢Ã÷ Gfi1b ÂѰ׿ÉÔÚ¹ÇËèÖе÷¿Ø¸Éϸ°û»îÐÔ £¬¡± Khandanpour ˵£º¡°ÔÚСÊóÖе±ÎÒÃÇ¹Ø±Õ Gfi1b »ùÒò±àÂëʱ£¬ÎÒÃÇ·¢Ã÷ÔìѪ¸Éϸ°û±»¼¤»î£¬×îÏÈѸËÙÀ©Ôö£¬ÍÑÀë¹ÇËè½øÈëѪҺÖе«È´Î´Ê§È¥¹¦Ð§¡£ÒÔÕâÖÖÒªÁì²Ù×÷ÔìѪ¸Éϸ°û»îѪÄÜÓÐÓõØÔö½ø¸Éϸ°ûÖÎÁÆ¡£¡±Ñо¿Ö°Ô±ÒÔΪ Gfi1b ʧ»îµÄÒÆÖ²¸Éϸ°û¿É¼ÓËÙÌìÉúеÄѪϸ°û£¬´Ó¶øÊ¹¸Éϸ°ûÖÎÁƸüÓÐÓöø½µµÍ»¼ÕßµÄΣÏÕ ¡£¿ÉÊÇÑо¿ÕßÃǶԵ÷¿Ø¸Éϸ°ûÐÝÃߺͷ¢¶¯µÄ»úÖÆÏÖÔÚ»¹²»ÊǺÜÇåÎú¡£
¡¡¡¡¡°ÎÒÃǵÄÏÂÒ»¸öÄ¿µÄÊÇÏêϸÑо¿Çóý Gfi1b ºóϸ°ûÄڵķÖ×Ó»úÖÆ£¬¸üÏêϸµØÏàʶ Gfi1b µ÷¿ØÔìѪ¸Éϸ°û¶¨Î»ºÍ¼¤»îµÄ»úÖÆ£¬¡± Möröy ²©Ê¿Ëµ£º¡°ÎÒÃǵÄÑо¿½«ÓÐÖúÓÚ¸üºÃµØÏàʶ¸Éϸ°û·¢¶¯ºÍÐÝÃßµÄÉúÎïѧ»úÖÆ£¬´Ó¶ø¿ª·¢³ö¶ÔÒÆÖ²¹©ÌåºÍ»¼ÕßÓÐÀûµÄÖÎÁÆÒªÁì¡£¡±Æ¾Ö¤¼ÓÄÃÃ÷ȷѪ²¡ºÍÁܰÍÁöлáµÄÊӲ죬ÌìÏÂÉÏÿËÄ·ÖÖÓ¾ÍÓÐһСÎÒ˽¼Ò±»È·ÕﻼÉÏѪ°©£¬¶øÃ¿ 10 ·ÖÖÓ¾ÍÓÐһСÎÒ˽¼ÒËÀÓÚ´ËÀ༲²¡¡£Í³¼ÆÏÔʾÿÄêÔ¼ÓÐ 54000 »¼ÉϸÃÀ༲²¡¡£°×Ѫ²¡ÔÚ¶ùͯºÍ 20 Ëê×÷ÓÃÇàÉÙÄêÖÐéæÃüÂÊÔ¶Ô¶¸ßÓÚÆäËû°©Ö¢¡£
¡¾µãÆÀ¡¿
¡¡¡¡·¢Ã÷ Gfi1b ÂѰ׿ÉÔÚ¹ÇËèÖе÷¿Ø¸Éϸ°û»îÐÔ£¬Ôö½ø¸Éϸ°ûÐÝÃß¡£¶ÔÆä×÷ÓûúÖÆµÄ½øÒ»²½Ñо¿ÓÐÖúÓÚѰÕÒÌá¸ß°×Ѫ²¡ÖÎÁÆÐ§¹ûµÄÒªÁì¡£
¡¾ÔÎÄժ¼¡¿ Blood 2010 : blood-2010-04-280305v1-blood-2010-04-280305.
Evidence that Growth factor independence 1b (Gfi1b) regulates dormancy and peripheral blood mobilization of hematopoietic stem cells
Cyrus Khandanpour, Ehssan Sharif-Askari, Lothar Vassen, et al.
Donor matched transplantation of hematopoietic stem cells (HSCs) is widely used to treat haematological malignancies, but is associated with high mortality. The expansion of HSC numbers and their mobilisation into the bloodstream could significantly improve therapy. We report here that adult mice conditionally deficient for the transcription factor Gfi1b, show a significant expansion of functional HSCs in the bone marrow and blood. Despite this expansion Gfi1b ko/ko HSCs retain their ability to self renew and to initiate multilineage differentiation, but are no longer quiescent and contain elevated levels of reactive oxygen species (ROS). Treatment of Gfi1b ko/ko mice with N-Acetyl-Cystein (NAC) significanty reduced HSCs numbers indicating that increased ROS levels are at least partially responsible for the expansion of Gfi1b deficient HSCs. Moreover, Gfi1b -/- HSCs show decreased expression of CXCR4 and VCAM-1, which are required to retain dormant HSCs in the endosteal niche, suggesting that Gfi1b regulates HSCs dormancy and pool size without affecting their function. Finally, the additional deletion of the related Gfi1 gene in Gfi1b ko/ko mice is incompatible with the maintenance of HSCs suggesting that Gfi1b and Gfi1 have partially overlapping functions but that at least one Gfi-gene is essential for the generation of hematopoietic stem cells.
5. ¶ËÁ£Í¨¹ý Cdc13 ÂѰ×ÕÐļ¶ËÁ£Ã¸Î¬³Ö×ÔÉí³¤¶È
¡¾ÕªÒª¡¿ ȪԴ£º¡¶·Ö×ÓÓëϸ°ûÉúÎïѧ¡· Ðû²¼Ê±¼ä£º 2010-9-25 16:52:22
¡¡¡¡¶ËÁ££¨ telomere £©ÊÇÕæºËÉúÎïȾɫÌå×îºóµÄÒ»ÖÖÌØÊâ½á¹¹£¬Æä³¤¶È·´Ó¦×Åϸ°û¸´ÖÆÊ·¼°¸´ÖÆÇ±ÄÜ£¬¶Ôϸ°ûµÄÆÆËéÆð¾öÒé×÷Óã¬Òò¶ø±»³Æ×÷ϸ°ûÊÙÃüµÄ¡°ÓÐË¿ÆÆËéÖÓ¡±¡£Ïàʶ¶ËÁ£Î¬³ÖȾɫÌåÍêÕûºÍÎȹ̵ĻúÖÆÊÇÐàÂõºÍ°©Ö¢Ñо¿ÁìÓòµÄ¹Ø×¢½¹µã¡£·Ñ³ÇÍþ˹´ïÑо¿ËùµÄ¿ÆÑ§¼ÒÃÇ¿ËÈÕ±¨µÀÁË Cdc13 ÂѰ×Òªº¦ÇøÓòµÄ½á¹¹ºÍ¹¦Ð§£¬Ö¤ÊµËüͨ¹ýÀο¿ÔÚ¶ËÁ£ DNA ÉÏÕÐļ¸´ÖÆÃ¸Î¬³Ö¶ËÁ£³¤¶È¡£Ñо¿ÂÛÎÄÔÚÏß½ÒÏþÓÚ¡¶·Ö×ÓÓëϸ°ûÉúÎïѧ¡·£¨ Molecular and Cellular Biology £©ÔÓÖ¾µÄ·âÃæÉÏ¡£
¡¡¡¡·Ñ³ÇÍþ˹´ïÑо¿ËùµÄÑо¿Ö°Ô±Ö¤Êµ Cdc13 ÂѰ×ÒÔ¶þ¾ÛÌåÐÎʽÓë DNA Ï໥×÷Óýø¶øµ÷¿Ø¶ËÁ£Ã¸×÷Óü°¶ËÁ£µÄ³¤¶È¡£ÓÉÓÚÕâÒ»»ù±¾ÉúÃüÀú³ÌÔÚ½ø»¯Àú³ÌÖи߶ÈÊØ¾É£¬Ñо¿Ö°Ô±Ñ¡ÔñÔÚ½Íĸ»ùÒòÉÏ¿ªÕ¹ÁËʵÑéÑо¿¡£Ñо¿Åú×¢ÈËÀà Cdc13 ÂѰ×ÓпÉÄܳÉΪ¿¹Ö×ÁöÖÎÁƵÄÒ»¸öÀíÏëµÄ°Ðµã¡£¡° Cdc13 ÂѰ×ÔÚά³ÖºÍÑÓÉì¶ËÁ£ÖÐʩչÖ÷ÒªµÄ×÷Ó㬡±Íþ˹´ï»ùÒò±í´ïºÍµ÷¿ØÍýÏëÖúÀí½ÌÊÚ£¬¸ÃÑо¿µÄµÚÒ»×÷Õß Emmanuel Skordalakes ˵£º¡°ÈËÀà Cdc13 ÂѰ׹¦Ð§Ê§³£ÓпÉÄܵ¼ÖÂÐàÂõ»òÊǰ©Ö¢£¬ÓÉÓÚά³Ö¶ËÁ£³¤¶ÈÊǰ©Ï¸°û»ñµÃÓÀÉú»¯µÄÖ÷Òª·½·¨¡£¡±
¡¡¡¡ÔÚÂÛÎÄÖÐ Skordalakes ºÍËûµÄͬÊÂÃÇÐÎòÁË Cdc13 ÔÚ¶ËÁ£¸´ÖÆÖеÄË«ÖØ¹¦Ð§¡£Ê×ÏÈ£¬Ëü¿ÉÕÙļ¶ËÁ£Ã¸¸´ºÏÎïÐγɶËÁ£×îºó±£»¤£¬±ÜÃâ¹ýʧµÄȾɫÌåÈںϡ£±ðµÄ£¬ Cdc13 »¹¿ÉÕÐļ¶ËÁ£Ã¸ºÍÆäËûµÄÏà¹ØÂѰ×ÑÓÉì¶ËÁ£³¤¶È¡£
¡¡¡¡µ±Ñо¿Ö°Ô±ÓÕµ¼ Cdc13 ±¬·¢Í»±äʹÆäÎÞ·¨Ðγɶþ¾ÛÌåʱ£¬¿Éµ¼Ö¶ËÁ£Ëõ¶Ì´Ó¶ø¼ÓËÙ½Íĸϸ°ûéæÃü¡£µ±ËûÃÇÓÕµ¼Í»±äÒÖÖÆ Cdc13 ¶þ¾ÛÌåÓëÍŽá DNA ÊèÉ¢Ôò»áµ¼Ö¶ËÁ£³¤¶ÉÌ«¹ýÑÓÉì¡£Ñо¿Ö°Ô±ÒÔΪ Cdc13 ÊÇͨ¹ýµ÷¿Ø DNA ¸´ÖÆÃ¸¶Ô¶ËÁ£Ê©Õ¹×÷Óᣡ° Cdc13 ÔÚά³Ö¶ËÁ£ÌØÕ÷ÉÏÊ©Õ¹ÖØ´óµÄ×÷Óã¬Î¬³ÖÕý³£Ï¸°ûÆÆËéÓë°©Ö¢Ö®¼äµÄƽºâ£¬¡± Skordalakes ˵¡£
¡¡¡¡ÔÚϸ°ûÆÆËéÖжËÁ£Ê©Õ¹×ÅÖ÷ÒªµÄ¡°ÉúÎïʱÖÓ¡±×÷Óá£Ã¿´Îϸ°ûÆÆË飬¶ËÁ£×ÜÊÇ×îÏÈ×îÏȸ´ÖÆ¡£¿ÉÊÇÓÉÓÚϸ°ûÄÚÂѰ×ÖÊÎÞ·¨¸´ÖÆÈ¾É«Ìå×îºóµÄ×îºó¼¸¸ö¼î»ù£¬Òò¶øÈ¾É«Ìå DNA ÿ¸´ÖÆÒ»´Î¾Íɥʧһ¶Î¶ËÁ£ DNA ÐòÁУ¬Ê¹µÃ¶ËÁ£Öð½¥Ëõ¶Ì¡£ÈôÊÇûÓжËÁ£×÷Ϊ»º³å£¬È¾É«Ìå¾ÍÓпÉÄÜ»áɥʧ¹¦Ð§»ùÒò¡£»ùÓÚ´ËÍþ˹´ïµÄһλ¿ÆÑ§¼Ò Leonard Hayflick ÔÚ 1961 ÄêÌá³öϸ°û¾ù±£´æ¡°ÊÙÏÞ¡±¡ª¡ªÕâ¾ÍÊÇÖøÃûµÄ¡°º£¸¥Àû¿Ë¼«ÏÞ¡±¡£
¡¡¡¡2008 Äê Skordalakes ʵÑéÊÒµÚÒ»´ÎÈ·¶¨Á˶ËÁ£Ã¸´ß»¯ÑÇ»ùµÄÈýά½á¹¹¡£¶ËÁ£Ã¸´ß»¯ÑÇ»ù¿É½«¶Ì DNA ÐòÁÐÌí¼Óµ½¶ËÁ£ £¬Ä³Ð©ÌØÒìµÄÓÈÆäÊÇÔÚÅßÌ¥·¢ÓýÀú³ÌÖеÄϸ°û¾ùÊÇͨ¹ý¶ËÁ£Ã¸Î¬³Ö¶ËÁ£³¤¶È¡£³ÉÈ˸Éϸ°û¡¢Ä³Ð©ÃâÒßϵͳϸ°ûÒÔ¼°°©Ï¸°ûµÄ¶ËÁ£Ã¸»îÐԽϸߡ£
¡¡¡¡Skordalakes ·¢Ã÷ Cdc13 ¶þ¾ÛÌåÌØÕ÷¾öÒéÁËÂѰ×ÖʵĽ¹µã¹¦Ð§¡ª¡ª½«¶ËÁ£Ã¸ÕÐļµ½¶ËÁ£ÉÏ¡£ Cdc13 ¶þ¾ÛÌå±£´æ¶à¸ö²î±ðÇ׺ÍÐ﵀ DNA ÍŽáλµã¡£´Ó¶øÊ¹µÃ Cdc13 ºá¿ç DNA £¬Ò»²¿·ÖϸÃÜÀο¿ÔÚ DNA ÉÏ£¬ÁíÒ»²¿·Ö¿¿½ü DNA Á´×îºóÓë¶ËÁ£Ã¸ÍŽᡣ Cdc13 µÄÕâÒ»ÌØÕ÷ÓÐÖúÓÚ½«¶ËÁ£Ã¸ÕÐļÖÁ¶ËÁ£¡£ Skordalakes ˵£º¡°Äã¿ÉÒÔÏëÏó¾ÍÓÌÈçÄã±»Ðü¹ÒÔÚÐüѵıßÑØ£¬Ò»Ö»ÊÖ±ÈÁíÒ»Ö»ÊÖ¸üÓÐÁ¦¡£Ä㽫ÓÃÓÐÁ¦µÄÊÖ׽סÐüѱßÑØ£¬¶øÁíÒ»Ö»ÊÖÉìµ½¿Ú´üÄÚÀïÄõ绰¡£ Cdc13 ¾ÍÊÇÕâÑùʩչ×÷Óõġ£¡±µ± Cdc13 Óë¶ËÁ£Ã¸Ï໥×÷ÓÃʱÔÏÈÓë DNA ÍŽáµÄÒ»¶ËÆÌ¿ª DNA £¬ÁíÒ»¶ËÔòÐγɶËÁ£Ã¸ -Cdc13 ¸´ºÏÎïÓëȾɫÌå×îºóϸÃÜÍŽá´Ó¶øÊ¹¶ËÁ£Ã¸µÖ´ï¶ËÁ£Î»Öᣡ°ËüÔÚʩչ±£»¤×÷ÓõÄͬʱµ÷¿Ø×ŶËÁ£Ã¸µÄ¹¦Ð§¡£¡± Skordalakes ʵÑéÊÒÈÔÔÚ¼ÌÐøÌ½Ë÷¶ËÁ£µÄÖØ´óÉúÎï»úÖÆ£¬Åж϶ËÁ£ÑÓÉìÀú³ÌÖÐÆäËûµÄ±ØÐèÂѰ×ÖÊ¡£±ðµÄ£¬ËûÃÇÒ²ÔÚÑз¢¿É×è¶Ï¶ËÁ£Ã¸ºÍÆäËûÏà¹ØÂѰ×ÊÊÓÃÓÚ°©Ö¢ÖÎÁƵÄÓÐDZÁ¦µÄС·Ö×ÓÒÖÖÆ¼Á¡£
¡¾µãÆÀ¡¿
¡¡¡¡Í¨¹ý¶Ô¶ËÁ£×ÔÎÒ¸´ÖÆ»úÖÆµÄÔ½À´Ô½ÉîÈëµÄÏàʶ£¬»òÐíδÀ´»á·¢Ã÷¿ÉÒÔά³Ö¶ËÁ£³¤¶ÈÎȹ̵ÄÒªÁ죬¹ØÓÚ¿¹ÐàÂõºÍ°©Ö¢Ñо¿ÓкܴóÆôʾ¡£
¡¾ÔÎÄժ¼¡¿ Mol. Cell. Biol. doi:10.1128/MCB.00515-10
Cdc13 N-terminal dimerization, DNA binding and telomere length regulation
Meghan T. Mitchell, Jasmine S. Smith, Mark Mason, et al.
The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1 protects chromosomes ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of the Cdc13N. The structure reveals that this domain comprises an OB-fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full length Cdc 13 i n vivo , point mutations that prevent Cdc13N dimerization or DNA binding, cause telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offers unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.