ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ËÄÊ®Æß£©
£¨7.4-7.10/2011£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
Ö÷ÒªÄÚÈÝ£ºÓÐÎüÊÕ¹¦Ð§µÄ×éÖ¯¹¤³ÌС³¦£»µÚÒ»´ÎÊèÉ¢³öµ¥¸ö´¿µÄÈËÌåѪҺ¸Éϸ°û£»ÒÒõ£¸¨Ã¸AˮƽӰÏìϸ°ûÉú³¤ÔöÖ³£»Âѳ²ÉÏÆ¤Ï¸°û°©±äÀú³ÌÖÐÉúÎïÁ¦Ñ§ÌØÕ÷µÄת±ä£»ÖÐÊàÉñ¾ÏµÍ³ËðÉ˺óÐγɵİ̺ÛȪԴÓÚÖÜϸ°û£»¼ä³äÖʸÉϸ°û--ÌåÄڵĴ´ÉËÒ©·¿¡£
½¹µã¶¯Ì¬£ºÒÒõ£¸¨Ã¸AˮƽӰÏìϸ°ûÉú³¤ÔöÖ³¡£
1. ÓÐÎüÊÕ¹¦Ð§µÄ×éÖ¯¹¤³ÌС³¦
¡¾¶¯Ì¬¡¿
×î½ü£¬ÂåÉ¼í¶¶ùͯҽԺµÄ¿ÆÑ§¼Òͨ¹ý×éÖ¯¹¤³ÌÊÖ¶ÎÔÚÀÏÊóÉíÉÏÖÆÔìÁËÓй¦Ð§µÄС³¦£¬Ï£ÍûδÀ´ÄÜÓÃÓÚÖÎÁƶ̳¦×ÛºÏÖ¢¡£ÔÚËûÃÇ×îнÒÏþµÄ¡°Ò»ÖÖ¶àϸ°ûÒªÁìÔÚÀÏÊóÖÐÐγÉ×ã¹»Á¿µÄ×éÖ¯¹¤³ÌС³¦¡±ÎÄÕÂÖб¨µÀÁËËûÃÇÄÜÔÚÀÏÊóÖÐÉú³¤×éÖ¯¹¤³ÌС³¦¡£Ð¡³¦ÊÇÒ»¸öºÜÊǾ«ÇɵľßÓÐÔÙÉúÄÜÁ¦µÄÆ÷¹Ù£¬ÔÚÎÒÃÇÒ»ÉúÖÐС³¦Ï¸°ûÒ»Ö±¸üС£ÕâЩ¿ÆÑ§¼ÒʹÓÃÁËС³¦µÄÕâÖÖÔÙÉúÄÜÁ¦£¬½«È¡×ÔÁ½ÖÜ´óÂÌɫӫ¹â±ê¼ÇµÄ¹©Ìåת»ùÒòÀÏÊóµÄÀàÆ÷¹Ùµ¥Î»£¨°üÀ¨ÐγÉС³¦µÄÖÖÖÖÀàÐÍϸ°ûµÄ»ìÏýÎ°üÀ¨¼¡Ï¸°ûºÍÉÏÆ¤Ï¸°û£©¼ÓÔØµ½ÉúÎï½µ½âÖÊÁÏ×ö³ÉµÄÖ§¼ÜÉÏ£¬´ËºóÖ²Èë3µ½6¸öÔ´óµÄÍêÈ«ÎÞÃâÒßÁ¦µÄת»ùÒòÀÏÊóÄ£×Ó¸¹ÄÚ£¬Æ¾Ö¤ÂÌɫӫ¹â±ê¼Ç×·×ÙÖ²Èëϸ°ûµÄÉú³¤ÇéÐΣ¬ÓÉÖ²Èëϸ°ûÌìÉúµÄÖÖÖÖϸ°ûȺ×îÖÕÐγÉÁ˰üÀ¨ËùÓÐÖ÷Ҫϸ°ûÀàÐÍ£¬¼¡Ï¸°û¡¢Éñ¾Ï¸°û¡¢ËÄÖÖÀàÐÍÉÏÆ¤Ï¸°ûºÍ²¿·ÖѪ¹Ü£¬ÀàËÆÓÚ×ÔȻС³¦½á¹¹µÄ¾ßÓÐÎüÊÕ¹¦Ð§µÄ×éÖ¯¹¤³ÌС³¦¡£
¡¾µãÆÀ¡¿
¡¡Õâ¸öʵÑéµÄЧ¹ûºÜÁîÈËÐË·Ü£¬Ï൱ÓÚͨÏ꾡°ûÒÆÖ²ÔÚÌåÄÚ×÷Óý³öÆð×÷ÓõÄС³¦¡£¿ÉÊÇ˼Á¿µ½ÊµÑéÊÇÔÚÍêÈ«ÎÞÃâÒßÁ¦µÄÀÏÊó¶ø·ÇÕý³£ÀÏÊóÉíÉÏ»ñµÃÕâһЧ¹ûµÄ£¬Æä¼ÛÖµÓÈÆäÊÇÓ¦ÓÃÔ¶¾°¾Í´ó´òÕÛ¿ÛÁË¡£
¡¾²Î¿¼ÂÛÎÄ¡¿Tissue Engineering Part A, 2011; 17 (13-14): 1841 DOI:10.1089/ten.tea.2010.0564
A Multicellular Approach Forms a Significant Amount of Tissue-Engineered Small Intestine in the Mouse
Fr¨¦d¨¦ric G. Sala, Jamil A. Matthews, Allison L. Speer, et al.
Tissue-engineered small intestine (TESI) has successfully been used to rescue Lewis rats after massive small bowel resection. In this study, we transitioned the technique to a mouse model, allowing investigation of the processes involved during TESI formation through the transgenic tools available in this species. This is a necessary step toward applying the technique to human therapy. Multicellular organoid units were derived from small intestines of transgenic mice and transplanted within the abdomen on biodegradable polymers. Immunofluorescence staining was used to characterize the cellular processes during TESI formation. We demonstrate the preservation of Lgr5- and DcamKl1-positive cells, two putative intestinal stem cell populations, in proximity to their niche mesenchymal cells, the intestinal subepithelial myofibroblasts (ISEMFs), at the time of implantation. Maintenance of the relationship between ISEMF and crypt epithelium is observed during the growth of TESI. The engineered small intestine has an epithelium containing a differentiated epithelium next to an innervated muscularis. Lineage tracing demonstrates that all the essential components, including epithelium, muscularis, nerves, and some of the blood vessels, are of donor origin. This multicellular approach provides the necessary cell population to regenerate large amounts of intestinal tissue that could be used to treat short bowel syndrome.
2. µÚÒ»´ÎÊèÉ¢³öµ¥¸ö´¿µÄÈËÌåѪҺ¸Éϸ°û
¡¾¶¯Ì¬¡¿
¿ÆÑ§ÔÓÖ¾×îнÒÏþµÄ¼ÓÄôó¿ÆÑ§¼ÒµÄÑо¿ÏÔʾ·¢Ã÷¸Éϸ°û50ÄêÀ´£¬µÚÒ»´ÎÒÔµ¥¸öϸ°ûÐÎʽÊèÉ¢³ö×î´¿µÄÈËÌåѪҺ¸Éϸ°û£¬Äܹ»ÔÙÉúÕû¸öѪҺϵͳ£¬¼«´óµÄÔö²¹ÁËѪҺϵͳ·¢ÓýµÄÏß·ͼ¡£ÑªÒºÏ¸°ûµÄÖÕÉúÉú²úÒÀÀµÓÚÉÙÉÙµÄÔìѪ¸Éϸ°û£¬¾ÓÉһϵÁвî±ðϸ°ûϵµÄ¹ý¶É״̬£¬Ò»Á¬Ôö²¹³ÉÊìϸ°û¡£¿ÉÊǹØÓÚÔìѪ¸Éϸ°ûµÄÑо¿Ò»Ö±ÊÜÀ§ÓÚÎÞ·¨´Ó¶àÄÜ×æÏ¸°ûÖн«Æä´¿»¯³öÀ´¡£¼ÓÄôóµÄÕâÏîÑо¿ÕÒµ½ÁËÔìѪ¸Éϸ°ûµÄÌØÊâ±ê¼ÇÎïCD49f£¬´Ó¶øÄܹ»½«ÆäÒÔµ¥¸öϸ°ûµÄÐÎʽ´¿»¯³öÀ´¡£Õ⽫´ó´óÔö½ø¹ØÓÚÔìѪ¸Éϸ°ûÉúÃü¼ÍÂɵÄÑо¿ÒÔ¼°ÁÙ´²ÖÎÁÆÓÃ;µÄ¿ª·¢¡£
¡¾µãÆÀ¡¿
Äܹ»³¹µ×´¿»¯ÈËÌåÔìѪ¸Éϸ°ûÎÞÂÛÊǶԸÉϸ°ûµÄ»ù´¡Ñо¿ÕվɶԸÉϸ°ûÁÙ´²Ó¦Óÿª·¢¶¼ÊÇÒ»¸öÍ»ÆÆÐÔÏ£Íû¡£ÕâÒ»·¢Ã÷×îÖÕ׼ȷ¶¨Î»ÁËÕû¸öѪҺϵͳµÄÆðÔ´µØ¡£
¡¾²Î¿¼ÂÛÎÄScience, 2011; 333 (6039): 218 DOI:10.1126/science.1201219
Isolation of Single Human Hematopoietic Stem Cells Capable of Long-Term Multilineage Engraftment
F. Notta, S. Doulatov, E. Laurenti, et al.
Lifelong blood cell production is dependent on rare hematopoietic stem cells (HSCs) to perpetually replenish mature cells via a series of lineage-restricted intermediates. Investigating the molecular state of HSCs is contingent on the ability to purify HSCs away from transiently engrafting cells. We demonstrated that human HSCs remain infrequent, using current purification strategies based on Thy1 (CD90) expression. By tracking the expression of several adhesion molecules in HSC-enriched subsets, we revealed CD49f as a specific HSC marker. Single CD49f+ cells were highly efficient in generating long-term multilineage grafts, and the loss of CD49f expression identified transiently engrafting multipotent progenitors (MPPs). The demarcation of human HSCs and MPPs will enable the investigation of the molecular determinants of HSCs, with a goal of developing stem cell¨Cbased therapeutics.
3. ÒÒõ£¸¨Ã¸AˮƽӰÏìϸ°ûÉú³¤ÔöÖ³
¡¾¶¯Ì¬¡¿
¡¡¡¡ÃÀ¹ú¿ÆÑ§¼Ò×î½ü·¢Ã÷ÒÒõ£¸¨Ã¸Aͨ¹ýÔö½øÉú³¤»ùÒòÉϵÄ×éÂѰ×ÒÒõ£»¯À´ÓÕµ¼Ï¸°ûÉú³¤ºÍÔöÖ³¡£Ï¸°û½øÈëÉú³¤ºÍ·Ö½âµÄ¾öÒ鱨ÐèÓëÆä¿ÉÓÃÓªÑøºÍ´úл״̬Ç×½üÅäºÏ¡£ÕâЩ´úлºÍÓªÑø·½ÃæµÄÒªÇóÌõ¼þ¼°ÆäÓÕµ¼Ï¸°ûÉú³¤ÔöÖ³µÄ»úÀí»¹ºÜ²»ÇåÎú¡£ÃÀ¹ú¿ÆÑ§¼Ò±¨µÀÁËÒÒõ£¸¨Ã¸A×÷Ϊ̼ԴµÄÏÂÓδúл²úÆ·´ú±íÁËÒ»ÖÖÓйØÉú³¤ÔöÖ³µÄÒªº¦´úлÐźš£ÔÚ½øÈëÉú³¤ÖÜÆÚʱ£¬Ï¸°ûÄÚÒÒõ£¸¨Ã¸AµÄˮƽÓÐʵÖÊÐÔÔöÌíЧ¹ûÓÕµ¼Ö÷ÒªµÄÉú³¤»ùÒòÉϵÄ×éÂѰ׾ÙÐÐGcn5p/SAGA ´ß»¯µÄÒÒõ£»¯£¬ÓÉ´Ë´ÙʹËûÃÇÄܹ»¿ìËÙת¼²¢ÖÂÁ¦ÓÚϸ°ûÉú³¤¡£ Òò´Ë£¬ÒÒõ£¸¨Ã¸AÆðµ½Ì¼Ô´¡°±ä×èÆ÷¡±µÄ×÷Óã¬Í¨¹ýÔö½øÉú³¤»ùÒòÉϵÄÌØÊâ×éÂѰ׵ÄÒÒõ£»¯À´Æô¶¯Ï¸°ûÉú³¤³ÌÐò¡£
¡¾µãÆÀ¡¿
¡¡ ϸ°ûÄÚÒÒõ£¸¨Ã¸AµÄˮƽӰÏìÉú³¤»ùÒòÉϵÄ×éÂѰ׵ÄÒÒõ£»¯Ë®Æ½£¬½ø¶øÓ°Ïìϸ°û½øÈëÉú³¤ºÍ·Ö½âµÄ¾öÒé¡£ÓªÑøºÍ´úл״̬¾öÒé×Åϸ°ûÉú³¤ºÍÔöÖ³£¬ÒÒõ£¸¨Ã¸A×÷ΪҪº¦´úлÐÅºÅÆðÖ÷Òª×÷Óá£
¡¾²Î¿¼ÂÛÎÄ¡¿Molecular Cell, 2011 42(4): 426-437
Acetyl-CoA Induces Cell Growth and Proliferation by Promoting the Acetylation of Histones at Growth Genes
Ling Cai, Benjamin M. Sutter, Bing Li, and Benjamin P. Tu
The decision by a cell to enter a round of growth and division must be intimately coordinated with nutrient availability and its metabolic state. These metabolic and nutritional requirements, and the mechanisms by which they induce cell growth and proliferation, remain poorly understood. Herein, we report that acetyl-CoA is the downstream metabolite of carbon sources that represents a critical metabolic signal for growth and proliferation. Upon entry into growth, intracellular acetyl-CoA levels increase substantially and consequently induce the Gcn5p/SAGA-catalyzed acetylation of histones at genes important for growth, thereby enabling their rapid transcription and commitment to growth. Thus, acetyl-CoA functions as a carbon-source rheostat that signals the initiation of the cellular growth program by promoting the acetylation of histones specifically at growth genes.
4. Âѳ²ÉÏÆ¤Ï¸°û°©±äÀú³ÌÖÐÉúÎïÁ¦Ñ§ÌØÕ÷µÄת±ä
¡¾¶¯Ì¬¡¿
°©Ï¸°ûÇÖÏ®ÐÔµÄÌåÏÖ±»ÒÔΪÊdzýÒÅ´«×ª±äÍ⣬»¹ÓëÉúÎïÁ¦Ñ§ºÍϸ°û¹Ç¼Ü½á¹¹µÄ¸Ä±äÓйء£ÃÀ¹ú¿ÆÑ§¼ÒµÄÒ»Ïî×îÐÂÑо¿²â¶¨ÁËÀÏÊóÂѳ²ÍâòÉÏÆ¤Ï¸°û°©±äÀú³ÌÖÐϸ°ûµÄÕ³µ¯ÐÔµÄת±ä£¬·¢Ã÷ÔÚËüÃÇÕÕ¾ÉÁ¼ÐÔµÄʱ¼ä¸üÓ²¸üÕ³£¬Ï¸°û±äÐÎÐÔµÄÔöÌíÖ±½ÓÓë°©±äÀú³ÌÏà¹Ø¡£Ï¸°û¹Ç¼Ü½á¹¹Öм¡¶¯ÂѰ×ˮƽµÄϽµÖ±½ÓÓëϸ°ûÉúÎïÁ¦Ñ§ÐÔ×ÓµÄת±äÏà¹Ø¡£²î±ð°©Ö¢½×¶ÎµÄ²î±ðÉúÎïÁ¦Ñ§ÌåÏÖÓÐÖúÓÚ°©Ö¢µÄÕï¶Ï¡¢Î£º¦ÆÀ¹ÀºÍÌá¸ßÖÎÁÆÐ§¹û¡£¸ÃÑо¿ÖУ¬°©±äϸ°ûÏà±Èδ°©±äµÄ¿µ½¡Ï¸°û£¬ÏԵøüÈíºÍ±äÐθü¿ì£¬Á÷¶¯ÐÔÒ²ÔöÌíÁË¡£
¡¾µãÆÀ¡¿
ϸ°ûÉúÎïÁ¦Ñ§ÐÔ×ÓµÄת±äÕ¹ÏÖÁ˰©Ö¢µÄÉú³¤½×¶Î£¬½«ÉúÎïѧÎÊÌâµÄÎïÀíÑ§ÌØÕ÷·ºÆð³öÀ´¡£Ì¹µ´Á˰©Ö¢Ñо¿ÒÔÖÂÉúÎïѧÑо¿µÄÊÓÒ°£¬Ò²ÓÐÖúÓÚÖØÐµĽǶÈÑо¿Ï¢Õù¾ö°©Ö¢ÄÑÌâ¡£
¡¾²Î¿¼ÂÛÎÄ¡¿Nanomedicine: Nanotechnology, Biology and Medicine, 2011; doi: 10.1016/j.nano.2011.05.012
The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures
Alperen N. Ketene, Eva M. Schmelz, Paul C. Roberts, Masoud Agah
Alterations in the biomechanical properties and cytoskeletal organization of cancer cells in addition to genetic changes have been correlated with their aggressive phenotype. In this study, we investigated changes in the viscoelasticity of mouse ovarian surface epithelial (MOSE) cells, a mouse model for progressive ovarian cancer. We demonstrate that the elasticity of late-stage MOSE cells (0.549 ¡À 0.281 kPa) were significantly less than that of their early-stage counterparts (1.097 ¡À 0.632 kPa). Apparent cell viscosity also decreased significantly from early (144.7 ¡À 102.4 Pa-s) to late stage (50.74 ¡À 29.72 Pa-s). This indicates that ovarian cells are stiffer and more viscous when they are benign. The increase in cell deformability directly correlates with the progression of a transformed phenotype from a nontumorigenic, benign cell to a tumorigenic, malignant one. The decrease in the level of actin in the cytoskeleton and its organization is directly associated with the changes in cell biomechanical property.
5. ÖÐÊàÉñ¾ÏµÍ³ËðÉ˺óÐγɵİ̺ÛȪԴÓÚÖÜϸ°û
¡¾¶¯Ì¬¡¿
Èðµä¿ÆÑ§¼ÒÔÚ×î½üµÄ¿ÆÑ§ÔÓÖ¾Éϱ¨µÀÁËËûÃÇ·¢Ã÷ÁËÖÐÊàÉñ¾ËðÉ˺óÐγɰ̺Û×éÖ¯µÄϸ°ûȪԴÊÇÖÜϸ°û¡£ÖÐÊàÉñ¾ËðÉ˺óȱËð×éÖ¯µÄÔÙÉúÄÜÁ¦ºÜÓÐÏÞ£¬ËðÉ˻ᱻ°ÌºÛ×éÖ¯¹Ø±Õ¡£ÓÉÓڴ˰̺Û×éÖ¯¸»º¬ÐÇÐνºÖÊϸ°û£¬³£±»ÒÔΪÊÇÉñ¾½ºÖʰ̺ۣ¬Æä×÷ÓÃÖØ´ó£¬±»Ì½ÌÖÁËÒ»¸ö¶àÊÀ¼ÍÁË¡£¸ÃÑо¿·¢Ã÷ÔÚÊÜÉ˼¹ËèÖÐÐγɰ̺۵ĻùÖÊϸ°ûÊÇÓÉÒ»ÖÖÌØÊâÑÇÐ͵ÄÖÜϸ°ûÅÉÉúÀ´µÄ£¬ÔÚÉË´¦¸ÃÖÜϸ°ûÊýÄ¿¶àÓÚÐÇÐνºÖÊϸ°û¡£×è¶Ï¸Ãϸ°ûµÄ·±ÑÜ»áʹÊÜÉË×éÖ¯ÎÞ·¨±ÕºÏ¡£¸Ã·¢Ã÷ÌṩÁËÒ»ÖÖ×éÖ¯ÏËά»¯µÄϸ°ûȪԴ¡£
¡¾µãÆÀ¡¿
ÖÐÊàÉñ¾ËðÉ˺óÐγɵİ̺Û×é֯ȪԴÓÚÖÜϸ°ûµÄ·¢Ã÷£¬ÓÐÖúÓÚÔö½øÉñ¾ËðÉËÐÞ¸´µÄÑо¿¡£
¡¾²Î¿¼ÂÛÎÄ¡¿Science 8 July 2011: Vol. 333 no. 6039 pp. 238-242£¬DOI: 10.1126/science.1203165
A Pericyte Origin of Spinal Cord Scar Tissue
Christian Göritz, David O. Dias, Nikolay Tomilin, et al.
There is limited regeneration of lost tissue after central nervous system injury, and the lesion is sealed with a scar. The role of the scar, which often is referred to as the glial scar because of its abundance of astrocytes, is complex and has been discussed for more than a century. Here we show that a specific pericyte subtype gives rise to scar-forming stromal cells, which outnumber astrocytes, in the injured spinal cord. Blocking the generation of progeny by this pericyte subtype results in failure to seal the injured tissue. The formation of connective tissue is common to many injuries and pathologies, and here we demonstrate a cellular origin of fibrosis.
6. ¼ä³äÖʸÉϸ°û--ÌåÄڵĴ´ÉËÒ©·¿
¡¾¶¯Ì¬¡¿
Ñо¿Åú×¢ÌåÄÚ¼ä³äÖʸÉϸ°ûλÓÚѪ¹ÜÖÜ£¬Ö»¹Ø×¢ËüÃǶàÏò·Ö½âÄÜÁ¦µÄ¹Å°å¿´·¨Ò²¸ÃÀ©Õ¹µ½°üÀ¨ÄÇÐ©ÍØ¿íÆäÖÎÁÆÔ¶¾°µÄͬÑùÎüÒýÈ˵Ĺ¦Ð§Èçϸ°ûµ÷Àí¡£Ï¸°ûÔÓÖ¾µÄһƪ×ÛÊö¾Í´ËÎÊÌâµÄÒÑÓÐÖ¤¾Ý¾ÙÐÐÁËÑо¿£¬Ð§¹û·¢Ã÷ÔÚ¾Ö²¿ËðÉËÖУ¬¼ä³äÖʸÉϸ°û´ÓѪ¹ÜÖܵÄλÖÃÊͷųöÀ´£¬¼¤»î£¬Í¨¹ýÉøÍ¸ÉúÎï»îÐÔ·Ö×Ӻ͵÷Àí¾Ö²¿ÃâÒß·´Ó¦½¨ÉèÔÙÉúµÄ΢ÇéÐΡ£ÕâÐ©ÓªÑøºÍÃâÒßµ÷ÀíÐÐΪÏÔʾ¼ä³äÖʸÉϸ°û¿ÉÄܳ䵱ÁËÌåÄÚ¹ÜÀíËðÉ˲¿Î»µÄ¡°Ò©·¿¡±¡£ÕâÒ»Äܹ»ÐγɶàÖÖ²î±ð×éÖ¯µÄ¸Éϸ°ûÔÚÆð×ÔÈ»±£»¤¡¢ÖÎÁƺÍÉú²ú¿¹ÉúËØµÄ×÷Óá£
¡¾µãÆÀ¡¿
¼ä³äÖʸÉϸ°ûÔ½À´Ô½¶àµÄÖ÷Òª×÷Óñ»Õ¹ÏÖ³öÀ´£¬³ä±ç°×Ã÷¸ÃÖÖ¸Éϸ°ûÔÚÌåÄÚµÄÖ÷ÒªÒâÒ壬ÔõÑùÌåÄÚÓªÔìÊÊÓÚËüÉúÑĵÄÇéÐÎÓ¦¸Ã³ÉΪʩչÆäÐÄÀí¹¦Ð§µÄÖ÷ÒªÑо¿¿ÎÌâ¡£
¡¾²Î¿¼ÂÛÎÄ¡¿Cell Stem Cell, Volume 9, Issue 1, 11-15, 8 July 2011 DOI: 10.1016/j.stem.2011.06.008
The MSC: An Injury Drugstore
Arnold I. Caplan, Diego Correa
Now that mesenchymal stem cells (MSCs) have been shown to be perivascular in vivo, the existing traditional view that focuses on the multipotent differentiation capacity of these cells should be expanded to include their equally interesting role as cellular modulators that brings them into a broader therapeutic scenario. We discuss existing evidence that leads us to propose that during local injury, MSCs are released from their perivascular location, become activated, and establish a regenerative microenvironment by secreting bioactive molecules and regulating the local immune response. These trophic and immunomodulatory activities suggest that MSCs may serve as site-regulated drugstores in vivo.