Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÎåÊ®Æß£©

2011Äê-09ÔÂ-18ÈÕ ÈªÔ´£ºmebo

£¨9.12-9.18/2011£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР


¡¡¡¡Ö÷ÒªÄÚÈÝ£ºÒÈÏÙ¦Âϸ°û¸»º¬µÄBace2øµ÷Àí¦Âϸ°ûµÄ¹¦Ð§ºÍÊýÄ¿£»ÈËÌåÄڶ๦ЧÈÜÁöϸ°û¶»²¡¶¾°ÐÏò°©Ï¸°ûµÄ¾²ÂöÔËËÍ£»Ñ×Ö¢¼¤»îÂѰ×ά³ÖѪÌÇÕý³£Ë®Æ½£»Ccl2ÓëLIFºÏ×÷¼¤»îStat3;¾¶À´Î¬³ÖESCs/iPSCsµÄ¶àÄÜÐÔ£»Í¨¹ýÆÏÌÑÌÇ´úл¿ØÖÆÒÈÏÙ¦Âϸ°ûÔÙÉú£»Ñ¡ÔñÐÔ¼ô½Óµ÷¿ØÅßÌ¥¸Éϸ°û¶àÄÜÐÔ¡£

¡¡¡¡½¹µã¶¯Ì¬£ºÑ¡ÔñÐÔ¼ô½Óµ÷¿ØÅßÌ¥¸Éϸ°û¶àÄÜÐÔ¡£

1.  ÒÈÏÙ¦Âϸ°û¸»º¬µÄBace2øµ÷Àí¦Âϸ°ûµÄ¹¦Ð§ºÍÊýÄ¿

¡¾¶¯Ì¬¡¿
¡¡¡¡ÌÇÄò²¡Ñо¿ÖеÄÊ¥±­Ö®Ò»¾ÍÊÇ·¢Ã÷´Ì¼¤¦Âϸ°ûÉú³¤µÄÉúÎï·Ö×ÓºÍÕÒµ½ÒÔ´ËΪ°ÐµãµÄÒ©Îï¡£Ò»¸öÈðÊ¿µÂ¹úÃÀ¹úµÄ¹ú¼ÊÑо¿ÍŶÓÓëÈðÊ¿ÂÞÊÏÖÆÒ©¹«Ë¾ºÏ×÷£¬²»µ«·¢Ã÷ÁËÒ»¸öµ÷Àí¦Âϸ°ûÉú³¤µÄÂѰ׷Ö×Ó£¬Ò²ÕÒµ½ÁËÒ»¸ö´Ì¼¤¸ÃÂѰ׵ϝºÏÎï¡£¦Âϸ°ûÊýÄ¿ïÔÌ­¹¦Ð§Ï÷ÈõÊÇ2ÐÍÌÇÄò²¡µÄ±ê¼Ç¡£¸ÃÏîÑо¿Í¨¹ýsiRNAɸѡ£¬ÔÚÊó¿ÆºÍÈËÀà¦Âϸ°ûÖÐÅжϳöBace2øÊÇÔöֳǰϸ°ûĤÂѰ×Tmem27µÄÑ¡ÔñÐÔÍÑÂäø¡£Bace2øʧЧµÄÀÏÊóºÍÓÃз¢Ã÷µÄBace2øÒÖÖÆ¼ÁÖÎÁƵÄÒȵºËØ¿¹ÐÔµÄÀÏÊó¶¼ÌåÏÖ³ö¦Âϸ°ûÊýÄ¿À©ÔöºÍÌá¸ßµÄÒȵºËØË®Æ½µ¼ÖµÄѪÌÇÎÈ̬µÄ¿ØÖƸÄÉÆ¡£

¡¾µãÆÀ¡¿
¡¡¡¡ÕâЩ·¢Ã÷ÌáÐÑBace2ø¼ÓÈëÁË¿ØÖÆÎ¬³Ö¦Âϸ°û²¢ÌṩÁ˺ÏÀíÕ½ÂÔͨ¹ýÒÖÖÆ¸ÃøÀ´À©ÔöÓй¦Ð§µÄÒÈÏÙ¦Âϸ°ûÊýÄ¿¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Cell Metabolism 2011, 14(3) pp. 365 ¨C 377
Bace2 Is a ¦Â Cell-Enriched Protease that Regulates Pancreatic ¦Â Cell Function and Mass
Daria Esterh¨¢zy, Ina St¨¹tzer, Haiyan Wang, et al.
Decreased ¦Â cell mass and function are hallmarks of type 2 diabetes. Here we identified, through a siRNA screen, beta site amyloid precursor protein cleaving enzyme 2 (Bace2) as the sheddase of the proproliferative plasma membrane protein Tmem27 in murine and human ¦Â cells. Mice with functionally inactive Bace2 and insulin-resistant mice treated with a newly identified Bace2 inhibitor both display augmented ¦Â cell mass and improved control of glucose homeostasis due to increased insulin levels. These results implicate Bace2 in the control of ¦Â cell maintenance and provide a rational strategy to inhibit this protease for the expansion of functional pancreatic ¦Â cell mass.

2.  ÈËÌåÄڶ๦ЧÈÜÁöϸ°û¶»²¡¶¾°ÐÏò°©Ï¸°ûµÄ¾²ÂöÔËËÍ

¡¾¶¯Ì¬¡¿
¡¡¡¡ÈôÊǾ²Âö×¢ÉäºóÏà¶ÔÕý³£Ï¸°ûÔÚÖ×Áö×éÖ¯ÖÐÄÜÑ¡ÔñÐԷŴ󵽺ܸߵÄŨ¶È£¬ÏñÂѰ׺ÍsiRNAsµÈÉúÎï·Ö×ÓÔÚ°©Ö¢ÖÎÁÆÖеÄЧ¹ûºÍÇå¾²ÐÔ»áÏÔ×ÅÔöÌí¡£ÍïϧÕâÔÚÈËÌåÉÏ»¹Ã»ÊµÏÖ¡£ÃÀ¹úºÍ¼ÓÄôóµÄ¿ÆÑ§¼Ò¼ÙÉè½ø»¯ÎªÔÚ²¸È鶯ÎïѪҺÖоÙÐÐÈ«ÉíÈö²¥µÄÒ»ÖÖ¶»²¡¶¾¿ÉÒÔˢгÉÑ¡ÔñÐÔÔÚ°©×éÖ¯Öи´ÖƲ¢ÓÃ×÷¾²ÂöÔËËͺÍÖ×ÁöÖÐת»ùÒòµÄ±í´ïµÄÔØÌå¡£JX-594ÊÇÒ»ÖÖÉúÎ﹤³ÌˢеÄÈÜÁöϸ°û¶»²¡¶¾£¬Äܹ»ÔÚ×ÊÖú¼¤»î±íƤÉú³¤Òò×ÓÊÜÌ壨EGFR£©/ Ras;¾¶µÄ°©Ï¸°ûÖи´ÖÆ¡¢±í´ïת»ùÒòºÍÀ©Ôö£¬Ëæºóϸ°ûÏûÈÚ±¬·¢¿¹°©ÃâÒß¡£Ñо¿±¨¸æÁËÁÙ´²ÊÔÑéÖÐJX-594ÔÚ¾²Âö×¢Éäºó»áÒÔ¼ÁÁ¿Ïà¹ØµÄ·½·¨Ñ¡ÔñÐÔѬȾÖ×Áö×éÖ¯²¢ÔÚÆäÖи´Öƺͱí´ïת»ùÒò²úÆ·¡£ÁÙ´²ÉÏÕý³£×éÖ¯²»±»Ñ¬È¾¡£Õâһƽ̨ÊÖÒÕ¿ªÆôÁËÔÚÈËÀà×ªÒÆÐÔʵÌåÁöÖÐÑ¡ÔñÐÔ±í´ï¸ßŨ¶ÈµÄ¼¸ÖÖ»¥²¹µÄÖÎÁƼÁºÍ³ÉÏñ¼ÁµÄ¶à¹¦Ð§²úÆ·µÄ¿ÉÄÜÐÔ¡£

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Îª°©Ö¢µÄ°ÐÏòÖÎÁÆÌṩÁËºÜºÃµÄÆ½Ì¨£¬Ò²Îª¿ª·¢¸ü¶à¸üÌØÒìÐԵĿ¹°©ÁÆ·¨ºÍÕï¶ÏÌṩÁËÊÖÒÕÖ§³Ö¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature, 2011; 477 (7362): 99 DOI: 10.1038/nature10358
Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans
Caroline J. Breitbach, James Burke, Derek Jonker, et al.
The efficacy and safety of biological molecules in cancer therapy, such as peptides and small interfering RNAs (siRNAs), could be markedly increased if high concentrations could be achieved and amplified selectively in tumour tissues versus normal tissues after intravenous administration. This has not been achievable so far in humans. We hypothesized that a poxvirus, which evolved for blood-borne systemic spread in mammals, could be engineered for cancer-selective replication and used as a vehicle for the intravenous delivery and expression of transgenes in tumours. JX-594 is an oncolytic poxvirus engineered for replication, transgene expression and amplification in cancer cells harbouring activation of the epidermal growth factor receptor (EGFR)/Ras pathway, followed by cell lysis and anticancer immunity. Here we show in a clinical trial that JX-594 selectively infects, replicates and expresses transgene products in cancer tissue after intravenous infusion, in a dose-related fashion. Normal tissues were not affected clinically. This platform technology opens up the possibility of multifunctional products that selectively express high concentrations of several complementary therapeutic and imaging molecules in metastatic solid tumours in humans.

3.  Ñ×Ö¢¼¤»îÂѰ×ά³ÖѪÌÇÕý³£Ë®Æ½

¡¾¶¯Ì¬¡¿
¡¡¡¡ÃÀ¹ú¿ÆÑ§¼Ò×î½ü±¨µÀÁËp38Ë¿ÁÑÔ­»î»¯ÂѰ׼¤Ã¸£¨MAPK£©ÔÚËÕ°±ËáThr48 ºÍ Ë¿°±ËáSer61²Ð»ùÁ×Ëữµþ½ÓÐÍX-boxÍŽáÂѰ×1£¨Xbp1s£©²¢´ó´óÔöÇ¿ÁËÀÏÊóÖÐXbp1sµÄºËǨá㣬¶øÈÎÒ»²Ð»ùÍ»±äΪ±û°±ËáµÄ»°¶¼»áÇÐʵ½µµÍXbp1sµÄºËǨáãºÍ»îÐÔ¡£»¹±¨µÀÁËͬÊÝÀÏÊóÏà±È£¬ÅÖÀÏÊóµÄ¸ÎÔàÖÐp38 MAPK»îÐÔÏÔÖø½µµÍ¡£½ø¶ø£¬ËûÃDZ¨¸æÁËͨ¹ý±í´ï½á¹¹ÐÔ»îÐÔMAP¼¤Ã¸¼¤Ã¸6£¨MKK6Glu£©À´¼¤»îp38 MAPKÄܹ»´ó´óÔöÇ¿Xbp1sµÄºËǨá㣬ïÔÌ­ÄÚÖÊÍøÑ¹Á¦£¬ÔÚÑÏÖØ·ÊÅÖÀÏÊóºÍÌÇÄò²¡ÊóÖн¨ÉèÕý³£ÑªÌÇ¡£Òò´Ë£¬ËûÃǵÄÑо¿Ð§¹û½ç˵ÁËÔÚËÕ°±ËáThr48 ºÍ Ë¿°±ËáSer61²Ð»ùÁ×ËữXbp1sÔÚ·ÊÅÖ¶¯ÎïÖÐά³ÖÎȹÌѪÌÇËùÆðµÄÒªº¦×÷Óã¬Ò²ÌáÐÑÔÚ·ÊÅÖÀÏÊó¸ÎÔàÖ줻îp38MAPK¿ÉÄÜÉú³¤³öеÄÖÎÁÆ2ÐÍÌÇÄò²¡µÄÊֶΡ£

¡¾µãÆÀ¡¿
¡¡¡¡·ÊÅÖµ¼ÖµĵͶÈÑ×Ö¢Ôö¶à±»ÆÕ±éÒÔΪÔö½øÁË2ÐÍÌÇÄò²¡µÄ±¬·¢£¬¶ø¸ÃÑо¿Åú×¢Ñ×Ö¢¼¤»îµÄÁ½¸öÂѰ×ÏÖʵÉϹØÓÚά³ÖÕý³£ÑªÌÇˮƽºÜÒªº¦£¬ËµÃ÷µÍ¶ÈÑ×Ö¢Ôö¶àÊÇÉíÌå±ÜÃâ·ÊÅÖÒýÆðÌÇÄò²¡µÄµÖÓùÊֶΡ£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Medicine, 2011; DOI: 10.1038/nm.2449
p38 MAPK¨Cmediated regulation of Xbp1s is crucial for glucose homeostasis
Jaemin Lee, Cheng Sun, Yingjiang Zhou, et al. 
Here we show that p38 mitogen-activated protein kinase (p38 MAPK) phosphorylates the spliced form of X-box binding protein 1 (Xbp1s) on its Thr48 and Ser61 residues and greatly enhances its nuclear migration in mice, whereas mutation of either residue to alanine substantially reduces its nuclear translocation and activity. We also show that p38 MAPK activity is markedly reduced in the livers of obese mice compared with lean mice. Further, we show that activation of p38 MAPK by expression of constitutively active MAP kinase kinase 6 (MKK6Glu) greatly enhances nuclear translocation of Xbp1s, reduces endoplasmic reticulum stress and establishes euglycemia in severely obese and diabetic mice. Hence, our results define a crucial role for phosphorylation on Thr48 and Ser61 of Xbp1s in the maintenance of glucose homeostasis in obesity, and they suggest that p38 MAPK activation in the livers of obese mice could lead to a new therapeutic approach to the treatment of type 2 diabetes.

4.  Ccl2ÓëLIFºÏ×÷¼¤»îStat3;¾¶À´Î¬³ÖESCs/iPSCsµÄ¶àÄÜÐÔ

¡¾¶¯Ì¬¡¿
¡¡¡¡ÀÏÊóÅßÌ¥¸Éϸ°ûºÍÓÕµ¼¶àÐÑĿϸ°û£¨ESCs/iPSCs£©µÄ¶àÄÜÐÔÄܹ»Í¨¹ýÉøÍ¸°×ϸ°ûÒÖÖÆÒò×Ó£¨LIF£©µÄËÇÑøÏ¸°ûά³Ö¡£ÈÕ±¾¿ÆÑ§¼Ò·¢Ã÷ËÇÑøÏ¸°ûÌṩµÄµÍŨ¶ÈµÄ£¨25µ¥Î»/ºÁÉý£©LIF£¬ÔÚûÓÐËÇÑøÏ¸°ûµÄÌõ¼þÏÂȱ·¦ÒÔά³ÖESCs/iPSCsµÄ¶àÄÜÐÔ¡£ËûÃÇÔÚÓкÍûÓÐËÇÑøÏ¸°ûµÄÌõ¼þϱÈÕÕ×÷ÓýÀÏÊóÓÕµ¼¶àÐÑĿϸ°û²¢»®·Ö²â¶¨ÕûÌåת¼Æ×ÒÔÈ·¶¨Î¬³Ö¶àÄÜÐÔËùÉæ¼°µÄÆäËûÒò×Ó¡£Ð§¹ûÕÒµ½17ÖÖ±í´ïÏÔ×Ųî±ðµÄ»ùÒò£¬°üÀ¨7ÖÖÔÚÓÐËÇÑøÏ¸°ûµÄÌõ¼þÏÂ×÷ÓýµÄÓÕµ¼¶àÐÑĿϸ°ûÖйý¸ß±í´ïµÄÇ÷»¯Òò×Ó¡£ÕâЩÇ÷»¯Òò×ÓÔÚiPSCsÖеÄÒìλ±í´ïÏÔʾCCÇ÷»¯Òò×ÓÅäÌå2£¨Ccl2£©ÓÕµ¼Á˶àÄÜÐÔµÄÒªº¦×ªÂ¼Òò×Ó»ùÒòKlf4, Nanog, Sox2 ºÍ Tbx3¡£²¢ÇÒ£¬Ìí¼ÓÖØ×éµÄCcl2ÂѰ׼±¾çÔöÌíÉú³¤ÓÚµÍLIFÎÞËÇÑøÏ¸°ûÌõ¼þϵÄNanog£¨ÂÌɫӫ¹âÂѰף©ÑôÐÔ iPSCs ÊýÄ¿¡£ ²¢½øÒ»²½ÏÔʾCcl2Ôö½ø¶àÄÜÐÔÊÇͨ¹ý¼¤»îStat3;¾¶ºÍËæºóµÄKlf4Éϵ÷À´µ÷ÀíµÄ¡£ËûÃÇ֤ʵÎúCcl2½éµ¼ÔöÌíϸ°û¶àÄÜÐÔÊÇ×ÔÁ¦ÓÚPI3-¼¤Ã¸ºÍMAPK;¾¶µÄ£¬ÒÔ¼°Tbx3¿ÉÄÜÊDZ»Klf4Éϵ÷µÄ¡£×ܵÄÀ´Ëµ£¬ÔÚÎÞËÇÑøÏ¸°ûÌõ¼þÏÂCcl2ÓëLIFºÏ×÷¼¤»îStat3;¾¶À´Î¬³ÖESCs/iPSCsµÄ¶àÄÜÐÔ¡£

¡¾µãÆÀ¡¿
¡¡¡¡CCL2ÓÐÔÚѬȾ»ò·¢Ñײ¿Î»ÕÐÄ¼ÌØ¶¨Ï¸°ûµÄ×÷Ó㬶ø¸ÃÑо¿µÚÒ»´ÎÅú×¢CCL2Ò²Äܹ»×ÊÖúά³ÖÓÕµ¼¶àÐÑĿϸ°ûµÄ¶àÄÜÐÔ£¬ÔÚÁíÒ»¸ö½Ç¶ÈÚ¹ÊÍÁËÑ×Ö¢ºÍϸ°ûÔöÖ³·Ö½âʱµÄÏàËÆÐÔ£¬ÕýÈçÔÚθ³¦Õ³Ä¤ÔÙÉú»Ø¸´Àú³ÌÖÐÊӲ쵽µÄÄÇÑù¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Stem Cells, 2011; 29 (8): 1196 DOI: 10.1002/stem.673
CC Chemokine Ligand 2 and Leukemia Inhibitory Factor Cooperatively Promote Pluripotency in Mouse Induced Pluripotent Cells
Yuki Hasegawa, Naoko Takahashi, Alistair R. R. Forrest, et al.
The pluripotency of mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be maintained by feeder cells, which secrete leukemia inhibitory factor (LIF). We found that feeder cells provide a relatively low concentration (25 unit/ml) of LIF, which is insufficient to maintain the ESCs/iPSCs pluripotency in feeder free conditions. To identify additional factors involved in the maintenance of pluripotency, we carried out a global transcript expression profiling of mouse iPSCs cultured on feeder cells and in feeder-free (LIF-treated) conditions. This identified 17 significantly differentially expressed genes (adjusted p value <0.05) including seven chemokines overexpressed in iPSCs grown on feeder cells. Ectopic expression of these chemokines in iPSCs revealed that CC chemokine ligand 2 (Ccl2) induced the key transcription factor genes for pluripotency, Klf4, Nanog, Sox2, and Tbx3. Furthermore, addition of recombinant Ccl2 protein drastically increased the number of Nanog¨Cgreen fluorescent protein¨Cpositive iPSCs grown in low-LIF feeder free conditions. We further revealed that pluripotency promotion by Ccl2 is mediated by activating the Stat3-pathway followed by Klf4 upregulation. We demonstrated that Ccl2-mediated increased pluripotency is independent of phosphoinositide 3-kinase and mitogen-activated protein kinase pathways and that Tbx3 may be upregulated by Klf4. Overall, Ccl2 cooperatively activates the Stat3-pathway with LIF in feeder-free conditions to maintain pluripotency for ESCs/iPSCs.

5.  ͨ¹ýÆÏÌÑÌÇ´úл¿ØÖÆÒÈÏÙ¦Âϸ°ûÔÙÉú

¡¾¶¯Ì¬¡¿
¡¡¡¡ÒÔÉ«ÁпÆÑ§¼Ò×î½üµÄÑо¿Åú×¢ÀÏÊóÖÐÉú²úÒȵºËصĦÂϸ°ûÓоªÈ˵ÄÔÙÉúÄÜÁ¦£¬ ÌáÐÑÀíÂÛÉÏÒ²ÄÜÔÙÉúÖÎÁÆÈËÀàÌÇÄò²¡¡£Ñ¹Á¦Ìõ¼þϵÄÐÄÀíÐÔ¦Âϸ°ûÔÙÉúÒÀÀµÐÒ´æ¦Âϸ°ûµÄ¼ÓËÙÔöÖ³£¬¿ÉÊÇ´¥·¢ºÍ¿ØÖÆÕâÒ»·´Ó¦µÄÒòËØ»¹²»ÇåÎú¡£Ê¹ÓÃÒȵºÒÆÖ²ÊµÑ飬ËûÃÇ֤ʵ¦Âϸ°ûÊýÄ¿ÊÇÕûÌå¿ØÖÆµÄ¶ø·ÇÏñ×éÖ¯ËðÉËÖ®ÀàµÄ¾Ö²¿ÒòËØ¿ØÖÆ¡£¦Âϸ°ûÄÚÆÏÌÑÌÇ´úлµÄºã¾Ãת±ä¶ø²»ÊÇѪÌÇˮƽ×Ô¼ºÊÇÌåÄÚ¦Âϸ°û»ù´¡ÔöÖ³ºÍÅâ³¥ÐÔÔöÖ³µÄÖ÷ÒªÕýÏòµ÷ÀíÆ÷¡£ÔÚϸ°ûÄÚ£¬ÒÅ´«²Ù×÷ºÍÒ©Àíѧ´¦Öóͷ£ÏÔʾÆÏÌÑÌÇͨ¹ýÆÏÌÑÌǼ¤Ã¸´úл£¬ÆÏÌÑÌǽͽâµÄµÚÒ»²½£¬ËæÖ®µÄKATPͨµÀµÄ¹Ø±ÕºÍĤȥ¼«»¯£¬À´ÓÕµ¼¦Âϸ°û¸´ÖÆ¡£ÕâЩÊý¾ÝΪͨ¹ý´úлÐèÇó¿ØÖƦÂϸ°ûÊýÄ¿µÄ×ÔÎÒÆ½ºâÌṩÁË·Ö×Ó»úÀí¡£

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿ËµÃ÷ÉíÌåµÄÕûÌåÆÏÌÑÌÇ´úлˮƽÊÇÓ°ÏìºÍ¿ØÖÆÒÈÏÙ¦Âϸ°ûÔöÖ³µÄÖ÷ÒªÒòËØ£¬Í¨¹ýµ÷ÀíÌåÄڵĴúлÓпÉÄÜÆô¶¯ºÍ¿ØÖÆÒÈÏÙ¦Âϸ°ûµÄÐÄÀíÐÔÔÙÉú£¬¹ØÓÚÖÎÁÆÈ±·¦¦Âϸ°ûµÄIÐÍÌÇÄò²¡ÓÐDZÔÚÖ÷ÒªÒâÒå¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Cell Metabolism, 2011; 13 (4): 440 DOI:10.1016/j.cmet.2011.02.012
Control of Pancreatic ¦Â Cell Regeneration by Glucose Metabolism
Shay Porat, Noa Weinberg-Corem, Sharona Tornovsky-Babaey,et al.
Recent studies revealed a surprising regenerative capacity of insulin-producing ¦Â cells in mice, suggesting that regenerative therapy for human diabetes could in principle be achieved. Physiologic ¦Â cell regeneration under stressed conditions relies on accelerated proliferation of surviving ¦Â cells, but the factors that trigger and control this response remain unclear. Using islet transplantation experiments, we show that ¦Â cell mass is controlled systemically rather than by local factors such as tissue damage. Chronic changes in ¦Â cell glucose metabolism, rather than blood glucose levels per se, are the main positive regulator of basal and compensatory ¦Â cell proliferation in vivo. Intracellularly, genetic and pharmacologic manipulations reveal that glucose induces ¦Â cell replication via metabolism by glucokinase, the first step of glycolysis, followed by closure of KATP channels and membrane depolarization. Our data provide a molecular mechanism for homeostatic control of ¦Â cell mass by metabolic demand.

6.  Ñ¡ÔñÐÔ¼ô½Óµ÷¿ØÅßÌ¥¸Éϸ°û¶àÄÜÐÔ

¡¾¶¯Ì¬¡¿
¡¡¡¡Ñ¡ÔñÐÔ¼ô½ÓÊÇÀ©´óÂѰ׶àÑùÐԺ͵÷Àí»ùÒò±í´ïµÄÖ÷ÒªÀú³Ì¡£¼ÓÄôó¿ÆÑ§¼ÒÈ·¶¨ÁËÒ»ÖÖ½ø»¯ÉÏÊØ¾ÉµÄÅßÌ¥¸Éϸ°ûÌØÒìÐÔÑ¡ÔñÐÔ¼ô½Ó£¬ÕâÖÖ¼ô½Ó»á¸Ä±ä²æÍ·×åת¼Òò×Ó£¨FOXP1£©¶ÔDNAÍŽáµÄÇãÏòÐÔ¡£ËûÃǵÄÑо¿Åú×¢ÅßÌ¥¸Éϸ°ûÌØÒìÐÔµÄͬ¹¤ÐÍFOXP1´Ì¼¤ÁËϸ°û¶àÄÜÐÔËùÐèµÄת¼Òò×Ó£¬°üÀ¨OCT4, NANOG, NR5A2, ºÍ GDF3µÄ»ùÒò±í´ï£¬Í¬Ê±ÒÖÖÆÁËÅßÌ¥¸Éϸ°û·Ö½âËùÐèµÄ»ùÒò¡£¸ÃÐÍFOXP1Ò²Ôö½øÅßÌ¥¸Éϸ°û¶àÄÜÐÔµÄά³Ö²¢ºÍÓÐÖúÓÚÓÐÓõÄÖØ×éÌåϸ°ûΪÓÕµ¼¶àÐÑĿϸ°û¡£ÕâЩЧ¹ûÕ¹ÏÖÁËÒ»ÖÖÑ¡ÔñÐÔ¼ô½Óͨ¹ý¿ØÖÆÒªº¦µÄÅßÌ¥¸Éϸ°ûÌØÒìÐÔת¼³ÌÐòÔÚµ÷Àíϸ°û¶àÄÜÐÔÖÐËùÆðµÄÒªº¦×÷Óá£

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿·¢Ã÷ÁËÒ»ÖÖ¿ØÖÆÅßÌ¥¸Éϸ°û¶àÄÜÐԵĿª¹Ø¡£¹ØÓÚÏàʶϸ°û¶àÄÜÐÔÒÔ¼°Ï¸°ûÔËÆøµÄ¾öÒéÓÐÖ÷ÒªÒâÒ塣ͬʱҲΪÑо¿ÔõÑùµ÷¿ØÏ¸°û¶àÄÜÐÔÕÒµ½ÁËÒ»¸öÉúÎï°Ðµã¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Cell, 2011; DOI: 10.1016/j.cell.2011.08.023
An Alternative Splicing Switch Regulates Embryonic Stem Cell Pluripotency and Reprogramming
Mathieu Gabut, Payman Samavarchi-Tehrani, Xinchen Wang, et al.
Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an AS event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs.
 

ÍøÕ¾µØÍ¼