Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨(¶þ)

2010Äê-04ÔÂ-04ÈÕ ÈªÔ´£ºmebo

£¨03.29--04.04 / 2010£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР

¡¡¡¡±¾ÖܵÄÏ£Íû´ó¶àÊǹØÓÚ»ùÒòÖÎÁÆ·½ÃæµÄ¡£ ÆäÖз¢Ã÷¿ØÖÆÎгæÔÙÉúÄÜÁ¦¡°×Ü¿ª¹Ø¡± µÄ±¨µÀ½ÏÁ¿ÓÐÒâÒå¡£¹ØÓÚÎÒÃÇÏàʶ¶¯ÎïµÄÔÙÉúÓÐºÜºÃµÄÆôʾ¡£ÁíÍâÁ½ÆªÓйضà°Í°·D2ÊÜÌåµÄÎÄÕÂÔÚ»ùÒò²ãÃæÉÏ¿´µ½ÁËÆä¶Ô³ÔÀ¬»øÊ³ÎïºÍ˯ÃßµÄÓ°Ï죬¹ØÓÚÑøÉú±£½¡»òÐíÓÐËù×ÊÖú¡£ÆäÓàÊÇÓйػùÒòÁÆ·¨µÄһЩϣÍûºÍ»ùÒòÔËÔØµÄÐÂÊÖÒÕ£¬»ùÒòÓëÐàÂõ¡¢ÃâÒߵĹØÏµµÈ¡£
1. ·¢Ã÷¿ØÖÆÎгæÔÙÉúÄÜÁ¦¡°×Ü¿ª¹Ø¡±
¡¾ÕªÒª¡¿
¡¡¡¡Ò»ÖÖÃû½Ð¡°Îг桱µÄ±âÐγæ×ÝÈ»±»ÇгɰٶΣ¬Ò»Á½Öܺóÿ¶Î¶¼»áÔÙÉú³öÍêÕûµÄÎгæ¡£ÎгæÕâÖÖ³¬Ç¿ÔÙÉúÄÜÁ¦Ò»Ö±ÊÇ¿ÆÑ§¼Ò¸ÐÐËȤµÄÑо¿¿ÎÌâ¡£½üÄêÀ´¶ÔÎгæ×î¸ÐÐËȤµÄÊÇ´ÓʸÉϸ°ûÑо¿µÄ¿ÆÑ§¼Ò£¬ÓÉÓÚÑо¿·¢Ã÷£¬ÎгæÔÙÉúµÄÉñÃØÔÚÓÚÆäÌåÄÚÓÐÒ»ÖÖÉ¢²¼È«ÉíµÄÈ«ÐÑĿϸ°û£¬Æä·Ö½âÄÜÁ¦ÀàËÆÈËÀàÅßÌ¥¸Éϸ°û¡£ÓÐËù²î±ðµÄÊÇ£¬ÎгæÕâÖÖ¸Éϸ°ûÄÜÔÚÈκÎʱ¼ä·Ö½â³ÉÆäËûÈκÎÖÖÀàµÄϸ°û¡£ÎгæµÄÉíÌå±»ÇжϺó£¬ËüÌåÄÚÉ¢²¼ÔÚ¸÷´¦µÄÕâЩ¸Éϸ°ûÄÜתÄð³ÉÉñ¾­¡¢¼¡Èâ¡¢³¦µÈÖÖÖÖ×é֯ϸ°û£¬ÖØÐ³¤³öÄÇЩʧȥµÄ²¿·Ö¡£
¡¡¡¡µÂ¹ú¿ÆÑ§¼Ò×î½ü·¢Ã÷ÁËÒ»ÖÖ¶ÔÎгæµÄÔÙÉúÄÜÁ¦ÓÐÒªº¦µ÷Àí×÷ÓõÄÂѰ×ÖÊ¡£ËûÃÇÏ£ÍûÕâÒ»·¢Ã÷ÓÐÖúÓÚÈËÀà¸Éϸ°ûÑо¿¡£ µÂ¹úÂí¿Ë˹•ÆÕÀʿ˷Ö×ÓÉúÎïÑо¿Ëù¿ÆÑ§¼ÒÓúËÌǺËËᣨRNA£©×ÌÈÅÒÖÖÆ»ùÒò±í´ïµÄ·½·¨ÒÖÖÆÁËÎгæÌåÄÚÂѰ×ÖÊ¡°Smed¡ªSmB¡±µÄºÏ³É£¬Ð§¹û·¢Ã÷Õâµ¼ÖÂÎгæÌåÄÚµÄÈ«ÐÑĿϸ°û¾ù²»¿ÉÆÆË飬ÎгæÒò´ËʧȥÁËÔÙÉúÄÜÁ¦¡£¼ÓÈëÑо¿µÄ¿ÆÑ§¼Ò˵£¬ÕâÏ൱ÓÚ·¢Ã÷ÁËÓ°ÏìÎгæ¸Éϸ°ûÆÆËéµÄ¡°×Ü¿ª¹Ø¡± £¬ÕâÒ»·¢Ã÷¿ÉÄÜÓÐÖúÓÚÈËÃÇÉîÈëÏàʶ×é֯ȱËðÐÞ¸´µÄ»úÀí¡£ÓÉÓÚÎгæÏ¸°ûÖÐËÄ·ÖÖ®ÈýµÄ»ùÒòÓëÈËÀà»ùÒòÏàËÆ£¬¿ÆÑ§¼Ò»¹Ï£ÍûËûÃǵÄÑо¿Ð§¹ûÓÐÖúÓÚÈËÀà¸Éϸ°ûÑо¿¡£Ð»ªÍø Ðû²¼Ê±¼ä£º2010-4-1 16:12:39

¡¾µãÆÀ¡¿
¡¡¡¡ÈôÊÇÄÜ֤ʵ¹Ø±ÕÆäËü»ùÒòÎгæÒÀÈ»ÄÜÔÙÉúµÄ»°£¬ÄÇôSmed-SmbÂѰ׾ͺܿÉÄÜÊǸöÎгæÈ«Ð§Éú³¤Òò×Ó¡£ÈôÊÇÄÜÔÚ²¸È鶯ÎïÌåÄÚ·¢Ã÷ÀàËÆ¹¦Ð§µÄÂѰ×£¬Äǽ«ÊǺÜÊǾªÈ˵Ä¡£»òÐíÒ»¾º¼¼ÔÙÉúÎïÖÊÀïÓÐÀàËÆ¹¦Ð§µÄÒòËØ£¡£¿ ÍŽáÉÏÆÚµÄ¡°·¢Ã÷²¸È鶯Îï¿ØÖÆÔÙÉúÄÜÁ¦»ùÒò¡±¹Ø±Õp21£¬¿ªÆôÔÙÉúµÄ±¨µÀ£¬Ò»¶ÔÕÆ¿ØÔÙÉúÄÜÁ¦µÄ»ùÒò¿ª¹Ø¾Í·ºÆðÁË: p21ÒÖÖÆÔÙÉú£¬±í´ïSmed-SmbÀàËÆÂѰ׵ĻùÒòÔö½øÔÙÉú¡£ ¶øÉú³¤ÓÐÓÃµÄ RNAi ÊÖÒÕÀ´°´ÐèÒª¹Ø±Õ¶ÔÓ¦»ùÒò¿ÉÒÔµÖ´ïÔö½ø»òÒÖÖÆÔÙÉúµÄÄ¿µÄ¡£²»¹ý¿´ÆðÀ´ÀëÕâ¸öЧ¹û»¹ºÜÔ¶¡£¿ÉÊǹØÓÚ½øÒ»²½Ïàʶ¶¯ÎïµÄÔÙÉúÆøÀíÊÇÓÐ×ÊÖúµÄ¡£

¡¾Ô­ÎÄժ¼¡¿
doi: 10.1242/dev.042564 April 1, 2010 Development 137,1055-1065.
Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation
Enrique Fernand¨¦z-Taboada1, Sören Moritz2, Dagmar Zeuschner2, Martin Stehling2, Hans R. Schöler2,3, Emili Sal¨®1,* and Luca Gentile2,*

Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the ¡®stemness¡¯ of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation.

2. À¬»øÊ³Îï³Éñ«Ö¢»òȷʵ±£´æ
¡¾ÕªÒª¡¿
¡¡¡¡ÃÀ¹ú×îÐÂÑо¿ÏÔʾ£¬·ÊÅÖÈËȺÎÞ·¨¾Ü¾øÃÀʳÓÕ»óµÄÚ¹ÊÍ¿ÉÄܲ¢²»ÊǸø×Ô¼ºÕÒÄó´Ê£¬À¬»øÊ³Îï³Éñ«Ö¢Ëƺõȷʵ±£´æ¡£ ÕâÒ»·¢Ã÷ÊÇͨ¹ýÀÏÊóÑо¿µÃ³öµÄ¡£ÔÚÑо¿Ö°Ô±ÎÞÏÞÖÆµØÎªÀÏÊóÌṩѬÈâ¡¢°õ±ý¡¢ÌÇ¿éÒÔ¼°ÆäËüÀ¬»øÊ³ÎïµÈ¸ßÈÈÁ¿Ê³ÎïÖ®ºó£¬ÀÏÊóÌåÖØ¿ìËÙÔöÌí¡£Ëæ×ÅÉíÌåÔ½À´Ô½ÅÖ£¬³Ô¹¤¾ßÄð³ÉÒ»ÖÖÇ¿ÆÈ£¬×ÝÈ»Õâô×öË«½Å»áÔâÊܵç»÷£¬ËüÃÇÒ²²»¿ÏÒâ·ÅÏÂצ×Ó£¬¼ÌÐøÏíÓÃÃÀʳ¡£Ïà±È֮ϣ¬ÏíÓÿµ½¡Ê³ÎïµÄÀÏÊó²¢Î´ÔöÌíÌ«¶àÌåÖØ£¬ÔÚÒâʶµ½³ÔµÄ¹ý¶à»áÔâµ½µç»÷Ö®ºó£¬ËüÃDZã×èÖ¹½øÊ³¡£Ñо¿Ö°Ô±Ö¸³ö£¬¸üÁîÈ˸ÐÓ¦ÊܾªµÄÊÇ£¬ÔÚÄÃ×ß·ÊÅÖÀÏÊóµÄÀ¬»øÊ³Îï²¢»»ÉÏ¿µ½¡Ê³ÎïÖ®ºó£¬ÕâЩ¼Ò»ï¾ÓȻѡÔñ¾øÊ³¡£ÔÚ³¤´ïÁ½ÖÜʱ¼äÀËüÃǾܾø³ÔÈκι¤¾ß¡£Ñо¿Ö°Ô±ÉÐÎÞ·¨È·¶¨Ñо¿Ð§¹ûÊÇ·ñÒ²ÊÊÓÃÓÚÈËÀà¡£
¡¡¡¡ÔÚ¶ÔÅÖÀÏÊóµÄ´óÄÔ¾ÙÐÐÆÊÎöʱ£¬Ñо¿Ö°Ô±·¢Ã÷¶à°Í°·D2ÊÜÌåïÔÌ­¡£Æ¾Ö¤´Ëǰ¾ÙÐеÄÑо¿£¬ÕâÖÖÊÜÌåÓë¿É¿¨ÒòºÍº£ÂåÒò³Éñ«ÓйØ¡£¿ÏÄá˵£º¡°¶¾ñ«µÄÒ»¸ö±ê¼Ç¾ÍÊǵ¼Ö´óÄԿ佱ϵͳÊÂÇé»úÖÆ±¬·¢×ª±ä¡£¡±ÔÚÈ˹¤ÒÖÖÆÆäËûÀÏÊóÄÔÖеÄÕâÖÖÊÜÌåÖ®ºó£¬ÕâЩÀÏÊóÒ²×îÏÈÇé²»×Ô½ûµØ×ªÏòÀ¬»øÊ³Îï¡£²¨Ê¿¶Ù´óѧҽѧԺ³Éñ«Ö¢ÊµÑéÊÒÖúÀí½ÌÊÚÆ¤°£ÌØÂÞ•¿ÆÌØÄÉÌåÏÖ£¬Ò»Ö±Èº¼¯µÄÖ¬·¾ÖеÄһЩÎïÖÊÒ²»á¸Ä±ä´óÄԵĿ佱ãÐÏÞ£¬½ø¶øÐγÉÒ»¸ö¶ñÐÔÑ­»·¡ª¡ªÖ»ÓгԵøü¶à£¬²Å»ª»ñµÃÖª×ã¸Ð¡£¿ÆÌØÄÉ˵£º¡°»Øµ½Õý³£×´Ì¬µÄΨһ·½·¨¾ÍÊǺã¾Ã½Úʳ¡¢ïÔÌ­ÌåÖØÍ¬Ê±²»ÔÙ³ÔÀ¬»øÊ³Îï¡£¡±ËûÓëͬÊ´Ëǰ¾ÙÐеÄÑо¿ÏÔʾ£¬ÈÃÀÏÊóÕõÍѸßÈÈÁ¿Ê³Îï¿ÉÄܵ¼Ö´óÄÔ·ºÆðÓë½ä¶¾ºÍ½ä¾ÆÀàËÆµÄת±ä¡£

¡¾µãÆÀ¡¿
¡¡¡¡¶à°Í°·Ïà¹ØµÄ´óÄԿ佱ϵͳÊÂÇé»úÖÆÓÉÓÚ³Éñ«ÐÐΪ¶ø±¬·¢¸Ä±ä£¬¶à°Í°·D2ÊÜÌåïÔÌ­¡£¸ÃÎÄÀÏÊóʵÑéÏÔʾ£¬ÏÖÔÚÕâÀà³Éñ«ÐÐΪÐÐÁÐÀïºÜ¿ÉÄÜÓÖ¼ÓÈëÁ˳ÔÀ¬»øÊ³Îï¡£ÔÙÉúÓýÉúµÄ¿µ½¡Ê³Æ×ɨ³ýÁËÕâÖÖ³Éñ«ÐÐΪ£¬Ô¤·À´óÄԿ佱ϵͳÊÂÇé»úÖÆµÄÒì³£¸Ä±ä£¬Î¬³Ö¿µ½¡µÄ´óÄÔ¹¦Ð§¡£ÍŽáÏÂÆªµÄ¶à°Í°·D2ÊÜÌåÌÞ³ýСÊóµÄ˯ÃßÑо¿£¬¿ÉÒÔÍÆ²â£¬À¬»øÊ³Îï³Éñ«µÄÈ˺ܿÉÄܵĻáÔ½³ÔÔ½¶à£¬Ô½Ë¯Ô½¶à£¬Ô½³¤Ô½ÅÖ£¬ÈÎÆÚÉú³¤ÏÂÈ¥£¬×îºóÉíÌå¸÷Æ÷¹Ù»á²»¿°Öظº£¬·ºÆðÖݪֲ¡Àí״̬ÒÔÖÂË¥½ß¡£¿É¼û¿ÆÑ§Òûʳ¶Ô¿µ½¡ÊǺεȵÄÖ÷Òª¡£

¡¾Ô­ÎÄժ¼¡¿
Nature Neuroscience | Article
Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats
Published online 28 March 2010 Paul M Johnson & Paul J Kenny
We found that development of obesity was coupled with emergence of a progressively worsening deficit in neural reward responses. Similar changes in reward homeostasis induced by cocaine or heroin are considered to be crucial in triggering the transition from casual to compulsive drug-taking. Accordingly, we detected compulsive-like feeding behavior in obese but not lean rats, measured as palatable food consumption that was resistant to disruption by an aversive conditioned stimulus. Striatal dopamine D2 receptors (D2Rs) were downregulated in obese rats, as has been reported in humans addicted to drugs. Moreover, lentivirus-mediated knockdown of striatal D2Rs rapidly accelerated the development of addiction-like reward deficits and the onset of compulsive-like food seeking in rats with extended access to palatable high-fat food. These data demonstrate that overconsumption of palatable food triggers addiction-like neuroadaptive responses in brain reward circuits and drives the development of compulsive eating. Common hedonic mechanisms may therefore underlie obesity and drug addiction.


3. ¡°¶à°Í°·D2ÊÜÌ塱Ñо¿ÎªÖÎÁÆ¡°µÚÒ»ÍíЧӦ¡±ÌṩÐÂ˼Ð÷
¡¾ÕªÒª¡¿
ҽѧÉϰÑһЩÈË»»´²ºóÎÞ·¨Èë˯µÄÕ÷Ïó³ÆÎª¡°µÚÒ»ÍíЧӦ¡±¡£×ÊÁÏÏÔʾ£¬Ëæ×Ź¤Òµ»¯Àú³ÌµÄ¼ÓËÙ£¬Éç»á¾ºÕù¡¢ÊÂÇéѹÁ¦¡¢²»Á¼Ò¹ÉúÑÄϰ¹ß¼°Éú³ÝÀÏÁ仯µÈÔµ¹ÊÔ­ÓÉ£¬È«ÇòÈý·ÖÖ®Ò»µÄÈ˱£´æË¯ÃßÎÊÌ⣬ÆäÖв»ÉÙÈËÒò¾­³£³ö²î²»¿ÉÔÚϰ¹ßµÄ´²ÉÏ˯Ãß»òÈë˯ǰÇéÐ÷¸Ä±ä¡¢¾«Éñ¿º·Ü»òÖ÷Òª¶øÄÑÒÔÈëÃߣ¬ÉîÏÝ¡°µÚÒ»ÍíЧӦ¡±µÄÍ´¿àÖ®Öв»¿É×԰Σ¬ÑÏÖØÓ°Ïìµ½Ô½ÈÕÊÂÇéЧÂʺÍÉíÌ念½¡¡£¸´µ©´óѧҽѧÉñ¾­ÉúÎïѧ¹ú¼ÒÖØµãʵÑéÊÒ»ÆÖ¾Á¦¿ÎÌâ×éÑо¿Ö°Ô±ÇúÎÀÃô¸±½ÌÊÚ¡¢Ðì꿺첩ʿµÈÔËÓø߶È×Ô¶¯»¯Ë¯ÃßÐѾõÆÊÎöϵͳ£¬¼Í¼ÒѾ­»ùÒòÌÞ³ý¡°¶à°Í°·D2ÊÜÌ塱СÊóµÄ˯ÃßÀú³Ì£¬²¢ÍŽáÒ©ÀíѧµÈÊֶΣ¬´Ó»ùÒòµ½ÐÐΪÆÊÎöÁ˶à°Í°·D2ÊÜÌåÔÚ˯ÃßÐѾõµ÷¿ØÖеÄ×÷Óá£Ð§¹û·¢Ã÷£¬ÓëÕý³£Ð¡Êó£¨Ò°ÉúÐÍСÊó£©Ïà±È£¬ÌÞ³ýÁ˶à°Í°·D2ÊÜÌåµÄСÊó£¬Ô˶¯ÆÚά³ÖÐѾõÄÑÌ⣬˯ÃßÁ¿ÔöÌí¡£ ΪģÄâÈËÔÚÐÂÇéÐÎÏÂÈç³ö²îסË޵ȣ¬·ºÆð»»´²ºóʧÃßÕ÷Ï󣬼´¡°µÚÒ»ÍíЧӦ¡±£¬Ñо¿Ö°Ô±Ìæ»»¶¯ÎïÆÜÉíÇéÐΣ¬¿¼²ìСÊóÔÚÐÂÇéÐÎÖеÄ˯ÃßÐÐΪ¡£Ð§¹ûÏÔʾ£¬¶à°Í°·D2ÊÜÌåÕý³£µÄСÊóÃæÁÙÐÂÇéÐδ̼¤£¬¼«Îª²»Ï°¹ß¡¢Èë˯ÄÑÌ⣬¶øÌÞ³ýÁ˶à°Í°·D2ÊÜÌåµÄСÊóÔò¡°¸ßÕíÎÞÓÇ¡±£¬Ñ¸ËÙÈë˯¡£

¡¾µãÆÀ¡¿
¶à°Í°·D2ÊÜÌåɾ³ýµÄÀÏÊóʵÑéÖв»·ºÆð¡±µÚÒ»ÍíЧӦ¡±, ÔÚÐÂÇéÐÎÖÐÄÜѸËÙÈë˯£¬ÇÒ˯ÃßÁ¿ÔöÌí¡£ Õâ¸öÕ÷ÏóÊÇ·ñÓëÉúÎïÖÓÓйØ£¬ÄÜ·ñÔÚ¸ÄÉÆË¯ÃßÉÏÓÐʹÓüÛÖµ£¬ÖµµÃÑо¿Ò»Ï£¬¿´ÊÇ·ñ¿ÉÄÜÓÃÔÚÉúÎïÖÓÒûʳÁÆ·¨ÉÏ¡£²»¹ýÐèÒª×¢ÖØµÄÊÇ£¬Í¨¹ý»ùÒòÇóýÊÖÒÕÑо¿µÄ½áÂÛÖ»Êǵ¥¸ö£¨»òij¼¸¸ö£©»ùÒòµÄ×÷Óã¬ÎÞ·¨Ë¼Á¿»òɨ³ýÕûÌåµÄµ÷¿ØÔÚÆäÖеÄÓ°Ï죬Òò´Ë½áÂÛÍùÍù²»ÊÇÄÇôʮ·ÖÈ·¶¨µÄ¡£

¡¾Ô­ÎÄժ¼¡¿
The Journal of Neuroscience, March 24, 2010, 30(12):4382-4389; doi:10.1523
Essential Role of Dopamine D2 Receptor in the Maintenance of Wakefulness, But Not in Homeostatic Regulation of Sleep, in Mice
Wei-Min Qu,1 Xin-Hong Xu,1 Ming-Ming Yan,1 Yi-Qun Wang,1 Yoshihiro Urade,2 and Zhi-Li Huang1
Dopamine (DA) and its D2 receptor (R) are involved in cognition, reward processing, and drug addiction. However, their roles in sleep¨Cwake regulation remain unclear. Herein we investigated the role of D2R in sleep¨Cwake regulation by using D2R knock-out (KO) mice and pharmacological manipulation. Compared with WT mice, D2R KO mice exhibited a significant decrease in wakefulness, with a concomitant increase in non-rapid eye movement (non-REM, NREM) and REM sleep and a drastic decrease in the low-frequency (0.75¨C2 Hz) electroencephalogram delta power of NREM sleep, especially during the first 4 h after lights off. The KO mice had decreased mean episode duration and increased episode numbers of wake and NREM sleep, many stage transitions between wakefulness and NREM sleep during the dark period, suggesting the instability of the wake stage in these D2R KO mice. When the KO mice were subjected to a cage change or an intraperitoneal saline injection, the latency to sleep in the KO mice decreased to half of the level for WT mice. The D2R antagonist raclopride mimicked these effects in WT mice. When GBR12909, a dopamine transport inhibitor, was administered intraperitoneally, it induced wakefulness in WT mice in a dose-dependent manner, but its arousal effect was attenuated to one-third in the D2R KO mice. However, these 2 genotypes showed an identical response in terms of sleep rebound after 2, 4, and 6 h of sleep deprivation. These results indicate that D2R plays an essential role in the maintenance of wakefulness, but not in homeostatic regulation of NREM sleep.

4. ·¬ÇÑ»ùÒò¼Ó¿¹°¬×ÌÒ©ÎïµÄлùÒòÁÆ·¨ÖÎÁư©Ö¢
¡¾ÕªÒª¡¿
¡¡¡¡ÈðµäÑо¿Ö°Ô±×îз¢Ã÷£¬Ò»ÖÖ·¬ÇÑ»ùÒòÓëÒ©Îï×éºÏºóÄÜÆÆËð°©Ï¸°û£¬ÕâÒ»·¢Ã÷½«ÓÐÖúÓÚÓûùÒòÁÆ·¨ÖÎÁư©Ö¢¡£Èðµä¡µÂ´óѧÑо¿Ö°Ô±ÈÕǰ½ÒÏþ¹«±¨Ëµ£¬ÕâÖÖ·¬ÇÑ»ùÒòÔÚ×ÊÖú½¨ÉèºÍÐÞ¸´·¬ÇÑ»ùÒò×é·½Ãæ¡°·Ç³£»îÔ¾¡±£¬µ«Ëü×Ô¼º²¢È±·¦ÒÔÆÆËð°©Ï¸°û¡£ÔÚÏȺó²âÊÔÁ˲î±ðÒ©Îïºó£¬Ñо¿Ö°Ô±×îÖÕ·¢Ã÷£¬ÕâÖÖ·¬ÇÑ»ùÒòÓ뿹°¬×̲¡Ò©ÎïAZT×éºÏºó£¬ÄܸüÓÐÓõع¥»÷°©Ï¸°û¡£Ñо¿Ö°Ô±Ö¸³ö£¬Ðí¶àÈ˶ԻùÒòÁÆ·¨ÐÄ´æÒÉÂÇ£¬µ£ÐIJ¡È˵ĻùÒòÔÚ½ÓÊÜÖÎÁƺ󱬷¢¸Ä±ä£¬Òý·¢¸ü¶àµÄ²»Á¼·´Ó¦¡£È»¶ø£¬ÉÏÊöÑо¿²¢²»±£´æÕâÖÖΣº¦ £¬ÓÉÓÚ·¬ÇÑ»ùÒò½ö½ö±»×¢È방ϸ°ûÄÚ£¬²¢²»Ó°ÏìÆäËûϸ°û¡£ лªÍø 2010-3-29 12:11:30

¡¾µãÆÀ¡¿
¡¡¡¡Ï¸°û×÷ÓýÒÔ¼°ÂãÊóʵÑéÏÔʾ Î÷ºìÊÁTK1»ùÒòÓ뿹°¬×ÌÒ©ÎïÄæ×ªÂ¼Ã¸ÒÖÖÆ¼ÁAZT×éºÏµÄ×Ôɱ»ùÒòÁÆ·¨ÍŽá¸Éϸ°û½éµ¼µÄ»ùÒò×¢Èë ÏÔÖøÌá¸ßÁ˰©Ï¸°û¶ÔÒ©ÎïµÄÃô¸Ð¶È£¬ÊµÖÊÐÔµÄÒÖÖÆÁËÖ×ÁöÉú³¤£¬¿ÉÒÔ˵ÔÚÕë¶Ô°©Ï¸°ûµÄ¹¥»÷·½ÃæÕâ¼òÖ±ÊǸöºÜºÃµÄÕ½ÂÔ£¬Ö»ÊÇÒ»·½Ã滹½ö½öÔÚʵÑ鶯ÎïÉíÉÏ¿´µ½Ð§¹û£¬ÁíÒ»·½Ã棬Ëü²¢Î´ÓÐÏÔʾ³ö¿ÉÒÔÖÎÓú°©Ö¢µÄDZÁ¦£¬²¢ÇÒ½«ÒìÖÖ»ùÒòתÈ붯ÎïÌåÄÚÄÄÅÂÖ»ÊÇÌåÄڵݩϸ°ûÖлᱬ·¢Ê²Ã´Ð§¹ûÉÐδ¿ÉÖª£¬Ò²¾Í±£´æ×Åδ֪µÄΣº¦¡£×î»ù±¾µÄ£¬ÕâÖÖÕ½ÂÔÒÀÈ»ÊÇÖα겻Öα¾¡£

¡¾Ô­ÎÄժ¼¡¿
Neuro Oncol. 2010 Feb 13 PMID: 20154339
Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy.
Khan Z, Knecht W, Willer M, Rozpedowska E, Kristoffersen P, Clausen AR, Munch-Petersen B, Almqvist PM, Gojkovic Z, Piskur J, Ekstr?m TJ.
The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen for central nervous system (CNS) tumors, several obstacles have been encountered such as inefficient gene transfer to the tumor cells, limited prodrug penetration into the CNS, and inefficient enzymatic activity of the suicide gene. We report here the cloning and successful application of a novel thymidine kinase 1 (TK1) from the tomato plant, with favorable characteristics in vitro and in vivo. This enzyme (toTK1) is highly specific for the nucleoside analog prodrug zidovudine (azidothymidine, AZT), which is known to penetrate the blood-brain barrier. An important feature of toTK1 is that it efficiently phosphorylates its substrate AZT not only to AZT monophosphate, but also to AZT diphosphate, with excellent kinetics. The efficiency of the toTK1/AZT system was confirmed when toTK1-transduced human glioblastoma (GBM) cells displayed a 500-fold increased sensitivity to AZT compared with wild-type cells. In addition, when neural progenitor cells were used as delivery vectors for toTK1 in intracranial GBM xenografts in nude rats, substantial attenuation of tumor growth was achieved in animals exposed to AZT, and survival of the animals was significantly improved compared with controls. The novel toTK1/AZT suicide gene therapy system in combination with stem cell-mediated gene delivery promises new treatment of malignant gliomas.

5. Ò»ÖÖ¿ÉʹҩÎïÖ±½Ó¹¥»÷°©Ï¸°ûµÄÈ«ÐÂÒªÁì
¡¾ÕªÒª¡¿
¡¡¡¡¼ÓÄôóÃÉÌØÀû¶û´óѧºÍÀ­Íß¶û´óѧµÄ¿ÆÑ§¼Ò·¢Ã÷ÁËÒ»ÖÖ¿ÉʹҩÎïÖ±½Ó¹¥»÷°©Ï¸°ûµÄÈ«ÐÂÒªÁ죬Æä¿ÉΪ¼±ÐÔ¹ÇËè°×Ѫ²¡»¼ÕߵȰ©Ö¢²¡ÈË´øÀ´¸£Òô¡£¾Ý¿ÆÑ§¼Ò³Æ£¬ÕâÖÖÐÂÒªÁìÏÖÔÚÒÑ¿¿½üÓÚÁÙ´²ÊÔÑé¡£Ïà¹ØÎÄÕ½ÒÏþÔÚ×îгöÊéµÄ¡¶ÉúÎﻯѧÔÓÖ¾¡·ÉÏ¡£ Ñо¿ÈÏÕæÈË¡¢ÃÉÌØÀû¶û´óѧҩѧϵ½ÌÊÚ¶¡´÷¶û•À­ÃÅËþ¶ûÌåÏÖ£¬ËûÃÇ·¢Ã÷ÈËÌåÖв¿·ÖÀàÐ͵Äϸ°û±£´æÒ»¸ö¡°Ãſڡ±£¬ÈçÔ´×Ô¹ÇËèµÄϸ°û¾Í±£´æÒ»¸öÔÊÐí²©À´Ã¹Ëصȿ¹°©Ò©Îï½øÈëµÄ¡°ÃÅ¡±£¬ÕÒµ½²¢·­¿ªÕâÉÈ¡°ÃÅ¡±¾Í¿ÉÈÃÒ©ÎïÖ±½Ó¹¥»÷Òý·¢°×Ѫ²¡µÄ°©Ï¸°û¡£¸ÃЧ¹ûΪ°©Ö¢ÖÎÁÆ¿ª·¢ÁËÒ»ÌõÐÂ;¾¶¡£
¡¡¡¡À­ÃÅËþ¶û½ÌÊÚÏÈÈÝ£¬ËûÔÚÊ®Äêǰ×îÏȽ«¸ÃÀíÂÛ¸¶Öîʵ¼ù£¬ÔÚÓëÈËÌåϸ°ûÊ®·Ö¿¿½üµÄ·¢½ÍÓýÍĸÉϾÙÐÐÁËÊÔÑé¡£ÏÖÔÚËù»ñ·¢Ã÷ÕýÊÇ»ùÓÚ½ÍĸʵÑéµÄЧ¹û£¬ÐÂÒªÁì¿É±»Ó¦ÓÃÓÚÈËÌåϸ°û£¬²¢ÄÜºÜ¿ì½øÈëÁÙ´²ÖÎÁÆ¡£
¡¡¡¡¾ÝÏÈÈÝ£¬ÐÂÒªÁì¹ØÓÚ°©Ö¢»¼ÕßÌØÊâÊǼ±ÐÔ¹ÇËè°×Ѫ²¡»¼ÕßʵÊô¸£Òô¡£¼±ÐÔ¹ÇËè°×Ѫ²¡Ó°ÏìÈ˵İ×ϸ°û£¬ÕâÖÖ°©Ö¢ºÜÊÇÄÑÖÎÁÆ£¬¾ø´ó²¿·Ö»¼Õß¶ÔÖÖÖÖ¿¹°©Ò©ÎïûÓз´Ó¦¡£À­ÃÅËþ¶û½ÌÊÚÌåÏÖ£¬ÐÂÒªÁì¿ÉÒÔ½«¿¹°©Ò©¼ÁÒÔÊøÁ÷µÄÐÎʽÖÎÁƼ±ÐÔ¹ÇËè°×Ѫ²¡¡£Ëû˵£º¡°ÀýÈçÎÒÃÇ·¢Ã÷²©À´Ã¹Ëصȿ¹°©Ò©¼Á¶ÔÀ´×Ô»¼ÕßÉíÉϵÄÁܰÍÁöϸ°û¾ßÓÐÕýÃæÐ§¹û£¬µ«Í¬Ê±»¹ÒªÒÀÀµ¡®Ãſڡ¯µÄ±£´æ¡£¡±ÓÉÓÚ²©À´Ã¹Ëز»ÌåÏÖΪÃâÒßÒÖÖÆ¼Á£¬ËûÒÔΪÕâ¶Ô»¼ÕßÀ´ËµÊÇÒ»¸öÊ®·ÖÀûºÃµÄÐÂÎÅ¡£
À­ÃÅËþ¶û½ÌÊÚ»¹ÌáÐѵ½£¬ÐÂÕÒµ½µÄ¡°Ãſڡ±Ö»±£´æÓÚ²¿·Öϸ°ûÀàÐÍ£¬ºÃ±ÈÄÇЩÀ´×ÔÓÚ¹ÇËèµÄϸ°û£¬µ«¹ØÓÚÈéÏÙ°©µÈ¾Í²»Æð×÷Óã¬ÕâÑù¾ÍºÜÄÑʹÓò©À´Ã¹ËصÈÀ´ÖÎÁÆÈéÏÙ°©»¼Õß¡£Òò´Ë£¬ËûÒÔΪÏÖÔÚÓ¦×ÅÊÖѰÕÒÄܹ»´Ì¼¤¡°Ãſڡ±±¬·¢µÄ·½·¨£¬ÕâÑù²Å»ª¹»Ê¹Óò©À´Ã¹ËصÈÒ©ÎïÖÎÁƸü¶àÀàÐ͵ݩ֢

¡¾µãÆÀ¡¿
¡¡¡¡Ñ°ÕÒÄܹ»´Ì¼¤¡°Ãſڡ±±¬·¢µÄ·½·¨ÊÇû׼µÄÊÂÇ飬ҪѰÕÒÖ»´Ì¼¤°©Ï¸°û¡°Ãſڡ±±¬·¢µÄ·½·¨£¬²»Ó°ÏìÕý³£Ï¸°û£¬¸üÄÑ¡£×ÜÖ®²»¿É½â¾öÒ©Îï¶Ô°©Ï¸°ûºÍÕý³£Ï¸°ûµÄÏàËÆ×÷Ó㬻¯ÁƵÄÔ¶¾°¾ÍÎÞ·¨¿´ºÃ¡£ÈôÊÇÄÜÏñÔÙÉúÓªÑøÎïÖÊÄÇÑùÔÚÓÐÀûÓÚÕý³£Ï¸°ûµÄͬʱìî³ý°©Ï¸°û£¬°Ñ¿´ËÆÃ¬¶ÜµÄÁ½¸ö·½ÃæÍ³Ò»ÆðÀ´×öµ½Ò»Ê¯¶þÄñ¡£Õâ²ÅÊǰ©Ö¢ÖÎÁƵÄ×îºÃЧ¹û¡£

¡¾Ô­ÎÄժ¼¡¿
JBC doi: 10.1074/jbc.M109.046151
The Human Carnitine Transporter SLC22A16 Mediates High Affinity Uptake of the Anticancer Polyamine Analogue Bleomycin-A5*
Mustapha Aouida,1, Richard Poulin¡ì and Dindial Ramotar,2
Bleomycin is used in combination with other antineoplastic agents to effectively treat lymphomas, testicular carcinomas, and squamous cell carcinomas of the cervix, head, and neck. However, resistance to bleomycin remains a persistent limitation in exploiting the full therapeutic benefit of the drug with other types of cancers. Previously, we documented that the Saccharomyces cerevisiae L-carnitine transporter Agp2 is responsible for the high affinity uptake of polyamines and of the polyamine analogue bleomycin-A5. Herein, we document that the human L-carnitine transporter hCT2 encoded by the SLC22A16 gene is involved in bleomycin-A5 uptake, as well as polyamines. We show that NT2/D1 human testicular cancer cells, which highly express hCT2, are extremely sensitive to bleomycin-A5, whereas HCT116 human colon carcinoma cells devoid of detectable hCT2 expression or MCF-7 human breast cancer cells that only weakly express the permease showed striking resistance to the drug. NT2/D1 cells accumulated fluorescein-labeled bleomycin-A5 to substantially higher levels than HCT116 cells. Moreover, L-carnitine protected NT2/D1 cells from the lethal effects of bleomycin-A5 by preventing its influx, and siRNA targeted to hCT2 induced resistance to bleomycin-A5-dependent genotoxicity. Furthermore, hCT2 overexpression induced by transient transfection of a functional hCT2-GFP fusion protein sensitized HCT116 cells to bleomycin-A5. Collectively, our data strongly suggest that hCT2 can mediate bleomycin-A5 and polyamine uptake, and that the rate of bleomycin-A5 accumulation may account for the differential response to the drug in patients.

6. C60ÔËÔØ»ùÒòÊÖÒÕΪÌÇÄò²¡»¼ÕßË͸£Òô
¡¾ÕªÒª¡¿
¡¡¡¡ÈÕ±¾¶«¾©´óѧµÄÑо¿Ö°Ô±Ê״οª·¢³öÁËʹÓó¬Ð¡ÇòÐÎ̼·Ö×ÓC60£¨¸»ÀÕÏ©£©µ¼Èë»ùÒòµÄÐÂÊÖÒÕ¡£¸ÃÊÖÒÕÓÐÍûΪÌÇÄò²¡»¼Õß´øÀ´¸£Òô¡£C60ÊÇ60¸ö̼ԭ×ÓÍŽáÔÚÒ»ÆðÐγɵÄÖ±¾¶È±·¦1ÄÉÃ×µÄÇò״ϸСÁ£×Ó¡£¶«¾©´óѧ¸±½ÌÊÚÒ°ÈëÓ¢ÊÀºÍ½ÌÊÚÖдåÈÙÒ»ÂÊÁìµÄÑо¿Ð¡×éÈÃC60Я´ø4¸ö°±»ù£¬ÖÆÔì³öÁËË®ÈÜÐÔC60£¬Ê¹ÆäÓë»ùÒòÍŽá³ÉΪ¿ÉÄÜ¡£
¡¡¡¡Ñо¿Ö°Ô±½«ÍŽáÁËÂÌɫӫ¹âÂѰ׻ùÒòµÄË®ÈÜÐÔC60×¢É䵽ʵÑéÊóÌåÄÚ¡£Ð§¹û·¢Ã÷ʵÑéÊóµÄ·Î¡¢¸ÎºÍÆ¢¶¼·ºÆðÁ˸ûùÒò£¬Ö¤ÊµÁËË®ÈÜÐÔC60¾ßÓÐǿʢµÄ»ùÒòÔËÔØÄÜÁ¦ ¡£ÔÚËæºóµÄʵÑéÖУ¬Ñо¿Ö°Ô±ÈÃË®ÈÜÐÔC60Я´øÖ¸µ¼ºÏ³ÉÒȵºËصĻùÒò½øÈëʵÑéÊóÌåÄÚ£¬Ð§¹ûʵÑéÊóÌåÄÚµÄÒȵºËØË®Æ½ÔöÌíµ½Ñ°³£µÄ1.5±¶£¬ÑªÌÇÖµÒ²½µµÍÁË20%ÒÔÉÏ¡£Ñо¿Ö°Ô±ÏÈÈÝ˵£¬Óë»ùÒòÍŽáµÄË®ÈÜÐÔC60´©Ï꾡°ûĤÒÔºó¾Í»áÓë»ùÒòÊèÉ¢£¬ËæÄòÒºÇãÔþÌåÍ⣬²»»áÔÚÌåÄÚȺ¼¯¡£
¡¡¡¡ÏÖÔÚ£¬ÖÎÁÆÌÇÄò²¡µÄÊÖ¶ÎÖ÷ÒªÊÇͨ¹ý¸ø»¼ÕßÖ±½Ó×¢ÉäÒȵºÏòÀ´½µµÍѪÌÇÖµ¡£ÈÕ±¾Ñо¿Ö°Ô±ÒÔΪ£¬´Ë´Î¿ª·¢µÄÐÂÊÖÒÕµÖ´ïÊÊÓû¯Ë®Æ½ºó£¬½µµÍѪÌÇֵЧ¹ûµÄÒ»Á¬Ê±¼ä½«±ÈÖ±½Ó×¢É仹Ҫ³¤£¬Óɴ˽«´ó´ó¼õÇỼÕߵļ縺¡£ÁíÍ⣬ÕâÏîÐÂÊÖÒÕÉÐÓпÉÄÜ´Ù³ÉÇå¾²ÐÔ¸ü¸ßµÄ»ùÒòÖÎÁÆÌÇÄò²¡ÒªÁìµÄ·ºÆð¡£

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÊÖÒÕÈôÄÜÉú³¤³ÉÊ죬¿ÉÄÜ»áΪRNAiÊÖÒÕ¸üºÃµÄÓÃÓÚÐè»ùÒòÖÎÁƵļ²²¡ÌṩºÜ´ó×ÊÖú¡£×ÜÖ®£¬Õâ¿´ÉÏÈ¥ÊÇÒ»ÏîºÜºÃµÄ»ùÒòÔËÔØÊÖÒÕ¡£

¡¾Ô­ÎÄժ¼¡¿
PNAS doi: 10.1073/pnas.0909223107
In vivo gene delivery by cationic tetraamino fullerene
Rui Maeda-Mamiyaa,b, Eisei Noirib,1, Hiroyuki Isobec, Waka Nakanishic, Koji Okamotob, Kent Doib, Takeshi Sugayad, Tetsuro Izumie, Tatsuya Hommaa, and Eiichi Nakamuraa,1
Application of nanotechnology to medical biology has brought remarkable success. Water-soluble fullerenes are molecules with great potential for biological use because they can endow unique characteristics of amphipathic property and form a self-assembled structure by chemical modification. Effective gene delivery in vitro with tetra(piperazino)fullerene epoxide (TPFE) and its superiority to Lipofectin have been described in a previous report. For this study, we evaluated the efficacy of in vivo gene delivery by TPFE. Delivery of enhanced green fluorescent protein gene (EGFP) by TPFE on pregnant female ICR mice showed distinct organ selectivity compared with Lipofectin; moreover, higher gene expression by TPFE was found in liver and spleen, but not in the lung. No acute toxicity of TPFE was found for the liver and kidney, although Lipofectin significantly increased liver enzymes and blood urea nitrogen. In fetal tissues, neither TPFE nor Lipofectin induced EGFP gene expression. Delivery of insulin 2 gene to female C57/BL6 mice increased plasma insulin levels and reduced blood glucose concentrations, indicating the potential of TPFE-based gene delivery for clinical application. In conclusion, this study demonstrated effective gene delivery in vivo for the first time using a water-soluble fullerene.

7. »ùÒòÁÆ·¨»Ö¸´»¼ÑÛ¼²Ð¡ÊóÊÓÁ¦
¡¾ÕªÒª¡¿
¡¡¡¡¾ÝÍâÑóýÌ屨µÀ£¬À´×ÔÃÀ¹úŦԼÖݲ¼·¨ÂÞÊС¢¶íº¥¶íÖÝ¿ËÀû·òÀ¼ÊкͶí¿ËÀ­ºÎÂíÖݵĿÆÑ§¼ÒʹÓûùÒòÁÆ·¨£¬¸ÄÉÆ¾ßÓÐÊÓÍøÄ¤É«ËØ±äÐÔ¼²²¡µÄÀÏÊóÊÓÁ¦¡£ÕâÒ»Ñо¿Ð§¹ûÅú×¢£¬¿ÆÑ§¼ÒÔÚʹî­Õ߻ָ´ÊÓÁ¦µÄõè¾¶ÉÏÈ¡µÃÁ˳¤×ãµÄǰ½ø¡£¾ÝϤ£¬¡¶ÃÀ¹úʵÑéÉúÎïѧѧ»áÍŽá»áÔÓÖ¾¡·2010Äê4Ô¿¯ÉϽÒÏþµÄһƪÑо¿±¨¸æÖУ¬¿ÆÑ§¼ÒÏêϸÐðÊöÁËʹÓúϳɵÄÄÉÃ׿ÅÁ££¬¸ÄÉÆ¾ßÓÐÊÓÍøÄ¤É«ËØ±äÐÔ¼²²¡ÀÏÊóÊÓÁ¦µÄÀú³Ì¡£ÊÓÍøÄ¤É«ËØ±äÐÔÊÇÊÓÍøÄ¤¹â¸ÐÊÜÆ÷ϸ°ûºÍÉ«ËØÉÏÆ¤Ï¸°û±äÐÔ£¬´Ó¶øµ¼ÖÂҹäºÍ¾ÙÐÐÐÔÊÓҰȱËðµÄÒ»×é¾ßÓÐÁÙ´²ÑÇÐ͵ĻùÒòÒÅ´«ÐÔÖÂϹÑÛ²¡¡£
¡¡¡¡Ñо¿Ð¡×é³ÉÔ±£¬¶í¿ËÀ­ºÎÂíÖݰ¿ËÀ­ºÉÂí´óѧ¿µ½¡¿ÆÑ§ÖÐÐÄϸ°ûÉúÎïѧϵÀ³Î÷²©Ê¿ºÍËýµÄͬÊÂÒ»Æð£¬Ñо¿ÁËÒ»×é´øÓÐÊÓÍøÄ¤»ºÂý±äÐÔ»ùÒòµÄÀÏÊó¡£À³Î÷ºÍËýµÄͬʶÔÕâЩÀÏÊó¾ÙÐÐÁËÈýÖÖ²î±ðÀàÐ͵ÄÖÎÁÆÒªÁ죺һÖÖÒªÁìÊÇÓðüÀ¨Rds»ùÒòµÄÄÉÃ׿ÅÁ£À´ÖÎÁÆ£¬Ò»ÖÖÒªÁìÊÇÓÃÕý³£»ùÒòÀ´ÖÎÁÆ£¬ÉÐÓÐÒ»ÖÖÒªÁìÊÇͨ¹ýÐÄÀíÑÎË®À´ÖÎÁÆ¡£ ʵÑéÈýÖÖ²î±ðÀàÐ͵ÄÖÎÁÆÒªÁìºó£¬Ñо¿Ö°Ô±½«ÊµÑéÀÏÊóºÍÆäËü¾ßÓÐÊÓÍøÄ¤É«ËØ±äÐÔ»òÊÓÍøÄ¤»ºÂý±äÐÔ¼²²¡ÀÏÊó¾ÙÐнÏÁ¿£¬´Ó¶øÆÊÎöµÃ³öʵÑéÀÏÊóÊÓÍøÄ¤µÄ¹¦Ð§ºÍ½á¹¹¡£Ñо¿Ö°Ô±·¢Ã÷£¬½ÓÊÜÄÉÃ׿ÅÁ£»ùÒòÁÆ·¨µÄÀÏÊ󣬯äÊÓ¾õ¹¦Ð§»ñµÃ¸ÄÉÆ£¬¾ßÓÐÏÔ×ÅÓúºÏµÄ¼£Ï󣬲¢ÇÒÕâÖÖЧ¹ûµ½ÊµÑ鿢ʶ¼»¹¼á³ÖÍêºÃ£¬¶ø½ÓÊÜÕý³£»ùÒòºÍÐÄÀíÑÎË®ÖÎÁƵÄÀÏÊ󣬯äÊÓÁ¦Ò»Ö±Ï½µ¡£ÉÏÊöʵÑéЧ¹ûÅú×¢£¬ÄÉÃ׿ÅÁ£ÊÇÄÍÊÜÐÔÓÅÒ죬²¢ÇÒÊÇÇå¾²ÎÞ¸±×÷ÓõÄÖÎÁÆÒªÁì¡£
¡¡¡¡Ñо¿Ö°Ô±³Æ£¬ËûÃÇÏ£Íû´ËÑо¿Ð§¹û¿É×ÊÖúÖÎÓúÄÇЩºÍÊÓÍøÄ¤É«ËØ±äÐÔ¡¢ÒÅ´«ÐÔ¼²²¡ºÍºóÌìÊÓÍøÄ¤¼²²¡µÈµ¼ÖÂʧÃ÷µÄ¼²²¡¡£ ¡¶ÃÀ¹úʵÑéÉúÎïѧѧ»áÍŽá»áÔÓÖ¾¡·ÔÓÖ¾Ö÷±à£¬½ÜÀ­¶û• µÂΤ˹Âü˵£º¡°Ê¹î­Õ߻ָ´ÊÓÁ¦Ò»¾­±»³ÆÎªÊÂÒµ¡£Ëæ×ÅÎÒÃǶԽø»¯¡¢ÒÅ´«Ñ§ºÍÄÉÃ×ÊÖÒÕÃ÷È·µÄ¼ÓÉÕâÖÖÉñÆæµÄÖÎÁÆÒªÁ콫±äµÃºÜÊÇÆÕ±é¡£¡±

¡¾µãÆÀ¡¿
¡¡¡¡î­Õ߸´Ã÷ÊÇÊ¥¾­ÖеÄÉñ¼££¬ÊÇҽѧÉϵÄÄÑÌ⣬ÉÏÊö»ùÒòÁÆ·¨»¹Ö»ÊÇÔÚÀÏÊóʵÑéÖÐÏÔʾÁËЧÁ¦£¬²»¹ýÒ²Äܸøî­Õß»¼Õß´øÀ´Ò»Ë¿ÆÚÍû£¬ÊÇ»ùÒòÖÎÁƵÄǰ½øÖ®Ò»£¬ËäÈ»»ùÒòÁÆ·¨ÔÚÁÙ´²Ó¦ÓÃÉÏ»¹ºÜ²»¿ÉÊ죬Ҳ²»È·¶¨¾¿¾¹ÄÜ·ñ³ÉÊìÆðÀ´£¬ÊÂʵÕâÊÇÔÚ¸ÉÔ¤ÈËÌå×ÔÉíµÄÒÅ´«ÐÅÏ¢£¬»áÔì³É¶à´óµÄÓ°Ï죬ʲôÑùµÄÓ°Ï죬ÎÒÃDz¢²»ÇåÎú¡£

¡¾Ô­ÎÄժ¼¡¿
Published as doi: 10.1096/fj.09-139147. (The FASEB Journal. 2010;24:1178-1191.)
Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa
Xue Cai*, Shannon M. Conley*, Zack Nash*, Steven J. Fliesler , , , Mark J. Cooper|| and Muna I. Naash*,1
The purpose of the present study was to test the therapeutic efficiency and safety of compacted-DNA nanoparticle-mediated gene delivery into the subretinal space of a juvenile mouse model of retinitis pigmentosa. Nanoparticles containing the mouse opsin promoter and wild-type mouse Rds gene were injected subretinally into mice carrying a haploinsufficiency mutation in the retinal degeneration slow (rds+/¨C) gene at postnatal day (P)5 and 22. Control mice were either injected with saline, injected with uncompacted naked plasmid DNA carrying the Rds gene, or remained untreated. Rds mRNA levels peaked at postinjection day 2 to 7 (PI-2 to PI-7) for P5 injections, stabilized at levels 2-fold higher than in uninjected controls for both P5 and P22 injections, and remained elevated at the latest time point examined (PI-120). Rod function (measured by electroretinography) showed modest but statistically significant improvement compared with controls after both P5 and P22 injections. Cone function in nanoparticle-injected eyes reached wild-type levels for both ages of injections, indicating full prevention of cone degeneration. Ultrastructural examination at PI-120 revealed significant improvement in outer segment structures in P5 nanoparticle-injected eyes, while P22 injection had a modest structural improvement. There was no evidence of macrophage activation or induction of IL-6 or TNF- mRNA in P5 or P22 nanoparticle-dosed eyes at either PI-2 or PI-30. Thus, compacted-DNA nanoparticles can efficiently and safely drive gene expression in both mitotic and postmitotic photoreceptors and retard degeneration in this model. These findings, using a clinically relevant treatment paradigm, illustrate the potential for application of nanoparticle-based gene replacement therapy for treatment of human retinal degenerations.¡ªCai, X., Conley, S. M., Nash, Z., Fliesler, S. J., Cooper, M. J., Naash, M. I. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa.

8. DAF-16»ùÒòͬÊÙÃüÇ×½üÏà¹Ø

¡¾ÕªÒª¡¿
¡¡¡¡´ÓÒÅ´«Ñ§½Ç¶ÈÑо¿ÐàÂõ»úÖÆµÄÒ»×éÓ¢¹ú¿ÆÑ§¼Ò4ÔÂ1ÈÕÔÚ¡¶¹«¹²¿ÆÑ§Í¼Êé¹Ý•×ۺϡ·ÍøÕ¾×«ÎÄÖ¸³ö£¬ËûÃÇÕë¶ÔʵÑéÊÒÈ䳿¾ÙÐеÄÑо¿Åú×¢£¬DAF-16»ùÒòͬÊÙÃü¡¢ÃâÒßÁ¦Ç×½üÏà¹Ø¡£ÓÉÓÚÐí¶à¶¯ÎïºÍÈËÌåÄÚ¶¼ÓµÓÐDAF-16»ùÒò£¬¸Ã·¢Ã÷ÓÐÖúÓÚ¸üºÃµØÏàʶӰÏìÈËÀàÐàÂõºÍÃâÒß¹¦Ð§µÄÔµ¹ÊÔ­ÓÉ¡£È«Çò¸÷µØµÄÈËÃÇÕýÔÚ´ó̤²½ÂõÏòÐàÂõ£¬¸ø¿µ½¡ºÍÉç»á°ü¹ÜϵͳÌá³öÁËÖØ´óÌôÕ½¡£µ¤Âó¿ÆÑ§¼ÒÈ¥Äê¾ÙÐеÄÒ»ÏîÑо¿·¢Ã÷£¬¸»×ã¹ú¼Ò³öÉúµÄÓ¤¶ùÖУ¬ÓÐÒ»°ë½«¿ÉÒÔÇì×£Æä°ÙËêµ®³½¡£¿ÆÑ§¼Ò¼±ÇÐÅÎÔ¸Äܹ»ÕÒµ½ÁîÈËÐàÂõµÄÔµ¹ÊÔ­ÓÉ£¬¾Ý´ËÑз¢³öÒ©Îï×ÊÖúÈËÃǾ¡¿ÉÄܳ¤ÊÙ£¬²¢ÔÚÓÐÉúÖ®Äê¼á³Ö¿µ½¡¡£Ó¢¹ú²®Ã÷º²´óѧµÄÂÞ±ö•÷¶ûÏòµ¼ÁËÕâÏîÑо¿¡£Ã·¶ûÍŶӽÏÁ¿ÁË4ÖÖ¹ØÏµÇ×½üµÄÈ䳿µÄÊÙÃü¡¢¿¹Ò©ÐÔÒÔ¼°ÃâÒßÁ¦ÇéÐΣ¬ËûÃÇ·¢Ã÷£¬Õâ4ÖÖÈ䳿ÌåÄÚµÄDAF-16»ùÒòµÄ»îÐÔ±£´æÖØ´óµÄ²î±ð¡£¸üÖ÷ÒªµÄÊÇ£¬DAF-16»îÐԵIJî±ðͬÊÙÃü¡¢¶Ô¿¹Á¦ºÍÃâÒßÁ¦ÏศÏà³É£ºDAF-16µÄ»îÐÔÔ½¸ß£¬È䳿µÄÊÙÃüÔ½³¤£¬¿¹Ñ¬È¾µÄÃâÒßÁ¦Ô½ºÃ¡£Ã·¶ûÌåÏÖ£¬ÕâÅú×¢£¬ÃâÒßÁ¦ºÍÐàÂõÇ×½üÏà¹Ø¡£ÎïÖÖÖ®¼äµÄDAF-16»ùÒòµÄ»îÐԵIJî±ð¶ÔÐàÂõºÍ¿µ½¡¾ßÓкÜÊÇÖ÷ÒªµÄÓ°Ï죬Õâ»òÔÊÐíÒÔÚ¹ÊÍÈËÓëÈËÖ®¼äµÄÊÙÃüΪºÎ²î±ð¡£
¡¡¡¡Ã·¶û³Æ£¬DAF-16ÔÚÌåÄÚ´ó´ó¶¼Ï¸°ûÖж¼ºÜ»îÔ¾£¬ËüÃÇͬÈËÌåÄÚµÄFoxO¼Ò×åµ÷Àí»ùÒòºÜÊÇÀàËÆ£¬¿ÆÑ§¼ÒÒÔΪFOXO¼Ò×åÔÚ¶¯Îïϸ°ûµÄ·Ö½â¡¢Éú³¤¡¢ÔöÖ³¡¢´úл¡¢ÃâÒß¼°ÐàÂõµ÷Àí·½Ãæ¾ßÓжàÑùÐÔ¹¦Ð§¡£Ó¢¹úÉúÎïÊÖÒÕºÍÉúÎï¿ÆÑ§Ñо¿Ð­»áÈÏÕæÈËÐÔ¸ñÀ­Ë¹•¿­¶ûÌåÏÖ£¬Õâ¸ö·¢Ã÷½«×ÊÖú¿ÆÑ§¼ÒÃ÷È·¾öÒéÈËÀàÐàÂõµÄÏà¹Ø»úÖÆ¡£
¡¾µãÆÀ¡¿
¡¡¡¡ÔÚ·Ö×Ó»úÖÆÉÏÑо¿ÐàÂõºÍÃâÒߣ¬ÆÚÍûÄܹ»ÕÒµ½ÁîÈËÐàÂõµÄÔµ¹ÊÔ­ÓÉ£¬¾Ý´ËÑз¢³öÒ©Îï×ÊÖúÈËÃǾ¡¿ÉÄܳ¤ÊÙ£¬²¢ÔÚÓÐÉúÖ®Äê¼á³Ö¿µ½¡¡£ÔÚÖØ´óµÄ·Ö×Óµ÷¿ØÍøÂçÌõÀíÊÇ×öÕâÏîÑо¿£¬×ÝÈ»ÓÐÏ£Íû£¬Ò²ÉÐÓкÜÂþ³¤µÄ·Ҫ×ß¡£¶øÔÚϸ°ûˮƽÉϵÄÑо¿£¬ÈËÌåÔÙÉú»Ø¸´¿ÆÑ§ÔòÒѾ­ÕÒµ½ÁËÔ¤·ÀÐàÂõµÄ;¾¶²¢ÕýÔÚÓÃÓÚÈËÌåÑøÉú¡£

¡¾Ô­ÎÄժ¼¡¿
Phenotypic Covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes
Francis R. G. Amrit, Claudia M. L. Boehnisch, Robin C. May*
Abstract
Background
Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin¨Clike growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species.
Methodology/Principal Findings
We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis.
Conclusions
The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants¡£

ÍøÕ¾µØÍ¼