Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÆßÊ®Áù£©

2012Äê-05ÔÂ-26ÈÕ ÈªÔ´£ºmebo

£¨5.13-5.26/2012£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР


¡¡¡¡Ö÷ÒªÄÚÈÝ£ºÊ×ÀýÕë¶Ô¶ËÁ£Ã¸µÄ»ùÒòÖÎÁÆÊ¹ÀÏÊóÊÙÃü¿µ½¡ÑÓÉì24%£»Î¬ÉúËØK2Äܹ»×ÊÖú²úÄÜȱ·¦µÄÏßÁ£Ìåά³ÖÕý³£µÄATP²úÁ¿£»Ò»Á¬Ñ¹ÖÆÂѰ×ÖÊ·­ÒëÔì³ÉÆÕÀï°ºÂѰ×ÒýÆðµÄÉñ¾­±äÐÔ£»Æ¤·ô¸½¼þµÄÐÄÀíÔÙÉú¼°Æä¶ÔÔÙÉúҽѧÐÄÀíѧµÄÒâÒ壻¾ÙÐÐÌǽͽâµÄÉÙÍ»½ºÖÊϸ°ûά»¤ËèÇʺÍÖáÍ»µÄºã¾ÃÍêÕûÐÔ£»»ùÒòÁÆ·¨ÖÎÁÆÊ§´ÏµÄDZÁ¦ºÍ¾ÖÏÞ¡£

¡¡¡¡½¹µã¶¯Ì¬£ºÊ×ÀýÕë¶Ô¶ËÁ£Ã¸µÄ»ùÒòÖÎÁÆÊ¹ÀÏÊóÊÙÃü¿µ½¡ÑÓÉì24%

1. Ê×ÀýÕë¶Ô¶ËÁ£Ã¸µÄ»ùÒòÖÎÁÆÊ¹ÀÏÊóÊÙÃü¿µ½¡ÑÓÉì24%
¡¾¶¯Ì¬¡¿ Î÷°àÑÀ¿ÆÑ§¼Ò×î½üµÄÑо¿ÀֳɵÄÓÕµ¼Ï¸°û±í´ï¶ËÁ£Ã¸£¬µ÷ÂýÉúÎïÖÓ£¬ÔÚ¿´·¨ÉÏΪÓÐÓõÄÌá¸ß¿µ½¡ÊÙÃüµÄ¿ÉÐÐÇÒÇå¾²µÄÒªÁìÌṩÁËÖ¤¾Ý¡£ ֮ǰÓÐÐí¶àÑо¿ÒѾ­Åúעͨ¹ýµ÷ÀíÌØ¶¨»ùÒòÄܹ»ÑÓÉì°üÀ¨²¸È鶯ÎïÔÚÄÚµÄÐí¶àÎïÖֵį½¾ùÊÙÃü£¬µ«Æù½ñΪֹ£¬ÕâЩҪÁì¶¼ÐèÒª´ÓÅßÌ¥½×¶Î¾ÍÓÀÊÀÐԵĸı任ÎïµÄ»ùÒò£¬ÕâÔÚÈËÀàÊDz»¿ÉÐеÄ¡£¶ø×î½üÎ÷°àÑÀ¿ÆÑ§¼ÒµÄÑо¿Åú×¢¶Ô³ÉÄêÂõÊóʵÑéÒ»´Î»ùÒòÖÎÁÆÄܹ»ÑÓÉìÆäÊÙÃü¡£ËûÃÇʹÓÃÁËÒÔǰ´ÓûÓÃÓÚ¿¹ÐàÂõµÄÒ»ÖÖ»ùÒòÖÎÁÆÕ½ÂÔ£¬²¢·¢Ã÷ÔÚÀÏÊóÉÏÊÇÇå¾²ÓÐÓõÄ¡£ËûÃÇÌôÑ¡ÁËÒ»ÖÖ²»¸´ÖÆ·ÇÖ²¡µÄÈ¥³ý×ÔÉí»ùÒòµÄ²¡¶¾×÷ÎªÔØÌå»®·ÖÏò1Äê´óµÄÀÏÊóºÍ2Äê´óµÄÀÏÊóÌåÄÚËÍÈë¿ÉÔڽϳ¤Ê±¼äÄÚ±í´ïµÄÀÏÊó¶ËÁ£Ã¸Äæ×ªÂ¼Ã¸£¨TERT£©»ùÒò£¬»®·ÖÑÓÉìÀÏÊ󯽾ùÊÙÃü´ï24%ºÍ13%£¬²¢ÇÒÏÔןÄÉÆÁË¿µ½¡×´Ì¬£¬ÑÓ³ÙÁ˹ÇÖÊËÉÉ¢¡¢ÒȵºËØ¿¹ÐÔµÈÐàÂõÏà¹Ø¼²²¡£¬Í¬Ê±Ã»ÓÐÌá¸ß»¼°©Î£º¦¡£
¡¾µãÆÀ¡¿ Ö»¹ÜÉÏÊöͨ¹ýÔÚ³ÉÄêºÍÍíÄêÂõÊóÌåÄÚÒýÈë¶ËÁ£Ã¸»ùÒòµÄÒªÁìÖÁÉÙÔÚ¶ÌÆÚÄÚ¿ÉÄÜÎÞ·¨×÷Ϊ¿¹ÐàÂõµÄÁÆ·¨Ó¦ÓÃÓÚÈËÀ࣬Õâһ˼Ð÷¿ÉÄÜΪ×éÖ¯ÄÚ¶ËÁ£Òì³£Ëõ¶ÌµÄ¼²²¡ÌṩÁËÒ»Öֿɹ©Ñ¡ÔñµÄÖÎÁƼƻ®¡£

¡¾²Î¿¼ÂÛÎÄ¡¿ EMBO Molecular Medicine, 2012 (in press) DOI: 10.1002/emmm.201200245 
Telomerase gene therapy in adult and old mice delays ageing and increases longevity without increasing cancer
Bruno Bernardes de Jesus, Elsa Vera, Kerstin Schneeberger, et al.
A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) andold (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy.

 

2. άÉúËØK2Äܹ»×ÊÖú²úÄÜȱ·¦µÄÏßÁ£Ìåά³ÖÕý³£µÄATP²úÁ¿
¡¾¶¯Ì¬¡¿±ÈÀûʱºÍÃÀ¹ú¿ÆÑ§¼ÒµÄÒ»ÏîºÏ×÷Ñо¿×î½ü·¢Ã÷άÉúËØK2Äܹ»Õü¾È»ùÒòÍ»±äÔì³ÉµÄÏßÁ£Ì幦ЧÕϰ­£¬ÎªÓÉÓÚÕâÖÖÏßÁ£Ì幦ЧÕϰ­Ôì³ÉµÄÅÁ½ðÉ­Ö¢»¼Õß´øÀ´ÁËÏ£Íû¡£ÏßÁ£Ìå×÷ΪÄÜÁ¿¹¤³§Ìṩϸ°ûÕý³£ÔËתËùÐèÄÜÁ¿¡£ÏßÁ£Ìåͨ¹ýתÔ˵ç×Ó²úÄÜ£¬¶øÔÚÅÁ½ðÉ­»¼ÕßÕâÒ»¹¦Ð§±»ÆÆË𣬵¼ÖÂÏßÁ£ÌåÎÞ·¨²ú³ö×ã¹»ÄÜÁ¿¡£Ö»¹Ü׼ȷ²¡Òò»¹²»ÇåÎú£¬×î½ü¼¸Ä꣬ÒÑ·¢Ã÷ÖîÈçPINK1 ºÍ Parkin »ùÒòÍ»±ä±£´æÓÚÅÁ½ðÉ­»¼ÕßÌåÄÚ£¬¶þÕß¶¼»áÒýÆðÏßÁ£Ì幦ЧÏ÷Èõ¡£±ÈÀûʱºÍÃÀ¹ú¿ÆÑ§¼ÒÓÃPINK1 »ò Parkin »ùÒòÍ»±äµÄ¹ûÓ¬×÷ΪģʽÉúÎ·¢Ã÷Á½ÖÖ¹ûÓ¬¶¼Ê§È¥Á˺½ÐÐÄÜÁ¦¡£½øÒ»²½µÄ¼ì²é·¢Ã÷ÕâЩ¹ûÓ¬ÌåÄÚµÄÏßÁ£Ìå¾ÍÏñÅÁ½ðÉ­»¼ÕßµÄÒ»ÑùÓй¦Ð§È±ÏÝ£¬²úÄÜïÔÌ­¡£µ±Î¹¸øÕâЩ¹ûӬάÉúËØK2ºó£¬ËüÃÇÏßÁ£ÌåµÄÄÜÁ¿Éú²ú»Ö¸´ÁË£¬Ìá¸ßÁ˺½ÐÐÄÜÁ¦¡£Ñо¿Ò²Ö¤ÊµÕâÖÖÄÜÁ¿Éú²ú»Ö¸´ÊÇÓÉÓÚάÉúËØK2×÷Ϊµç×ÓתÔËÔØÌåÔö½øÁËÏßÁ£ÌåÄڵĵç×ÓתÔË¡£
¡¾µãÆÀ¡¿Î¬ÉúËØK2×÷ΪÏßÁ£ÌåÄÚµç×ÓÔØÌ壬Äܹ»×ÊÖúÒò»ùÒòÍ»±äÔì³É²úÄÜȱ·¦µÄÏßÁ£Ìåά³ÖÕý³£µÄATPÉú²úÁ¿£¬Ò²ÐíδÀ´ÓÐÏ£ÍûΪÅÁ½ðÉ­»¼ÕßÌṩеÄÖÎÁƼƻ®¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Science, 2012; DOI:10.1126/science.1218632
Vitamin K2 Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency
M. Vos, G. Esposito, J. N. Edirisinghe, et al.
Human UBIAD1 localizes to mitochondria and converts vitamin K1 to vitamin K2. Vitamin K2 is best known as a cofactor in blood coagulation, but in bacteria it is a membrane-bound electron carrier. Whether vitamin K2 exerts a similar carrier function in eukaryotic cells is unknown. We identified Drosophila UBIAD1/Heix as a modifier of pink1, a gene mutated in Parkinson¡¯s disease that affects mitochondrial function. Here, we found that vitamin K2 was necessary and sufficient to transfer electrons in Drosophila mitochondria. Heix mutants showed severe mitochondrial defects that were rescued by vitamin K2, and, similar to ubiquinone, vitamin K2transferred electrons in Drosophila mitochondria, resulting in more efficient adenosine triphosphate (ATP) production. Thus, mitochondrial dysfunction was rescued by vitamin K2 that serves as a mitochondrial electron carrier, helping to maintain normal ATP production.

 

3. Ò»Á¬Ñ¹ÖÆÂѰ×ÖÊ·­ÒëÔì³ÉÆÕÀï°ºÂѰ×ÒýÆðµÄÉñ¾­±äÐÔ
¡¾¶¯Ì¬¡¿ÏÖÔÚ¹ØÓÚÉñ¾­±äÐÔ¼²²¡ÖÐÉñ¾­Ï¸°ûµÄéæÃüÔµ¹ÊÔ­ÓÉ»¹ºÜ²»ÇåÎú£¬Ðí¶à´ËÀ༲²¡£¬ÏñÍíÄê³Õ´ô¡¢ÅÁ½ðÉ­Ö¢ºÍ·èÅ£²¡¶¼Óë¹ýʧÕÛµþµÄ¼²²¡ÌØÒìÂѰ׵ĻýÀÛÓйØÁª¡£ÕâЩ¹ýʧÕÛµþµÄÂѰ×ˮƽµÄÉÏÉýÒýÆðϸ°ûµÄ±£»¤ÐÔ·´Ó¦-ÂѰ×È¥ÕÛµþ¡£ÕâÒ»·´Ó¦Í¾¾¶µÄÓ°ÏìÖ®Ò»ÊÇÔÝʱÖÕÖ¹ÂѰ×ÖÊ·­Òë¡£¶øÓ¢¹ú¿ÆÑ§¼ÒµÄ×îÐÂÑо¿·¢Ã÷È¶¾¸´ÖÆÀú³ÌÖÐµÄÆÕÀï°ºÂѰ׵ĻýÀۻ᳤ÆÚÑ¹ÖÆÕûÌåµÄÂѰ×Öʺϳɣ¬Ê¹µÃÈ¶¾Ñ¬È¾µÄÀÏÊóÉñ¾­Í»´¥¹ÊÕÏ¡¢Éñ¾­ÔªÉ¥Ê§£¬¶øÔö½ø»Ö¸´ÕâЩÀÏÊóº£ÂíÇøµÄÂѰ×ÖÊ·­ÒëÄܹ»±£»¤Éñ¾­¡£¼øÓÚÂѰ׹ýʧÕÛµþºÍϸ°ûÂѰ×È¥ÕÛµþµÄ±£»¤ÐÔ·´Ó¦ÆÕ±é±£´æÓëÖÖÖÖÉñ¾­±äÐÔ¼²²¡ÖУ¬ËûÃǵÄЧ¹ûÕ¹ÏÖÁ˵÷ÀíÏñ·­Òë¿ØÖÆÕâÑùµÄÅäºÏµÄÉú»¯Í¾¾¶¶ø·Ç¼²²¡ÌØÒìÐÔ;¾¶£¬»òÐíÄܹ»·¢Ã÷еÄÁÆ·¨±ÜÃâÉñ¾­Í»´¥¹ÊÕϺÍÉñ¾­ÔªÉ¥Ê§¡£

¡¾µãÆÀ¡¿ ¸ÃÑо¿ÏÔʾÁËÒ»ÖÖÃÈѿ״̬µÄ˼Ð÷ת±ä¼´´ÓÕë¶Ô¼²²¡Öβ¡µ½Õë¶Ôµ÷ÖÎÉíÌåµÄÕý³£¹¦Ð§Öβ¡¡£Ò²¾ÍÊÇ˵ÕâÏîÑо¿µÄÑо¿Ö°Ô±×îÏÈÒâʶµ½Í¨¹ý»Ö¸´»úÌåµÄÕý³£¹¦Ð§À´µÖ´ïÈ¥³ýÄ³Ð©ÌØ¶¨¼²²¡Ò²ÐíÊÇÒ»ÖÖ¸üºÃµÄҽѧ˼Ð÷¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature, 2012; DOI:10.1038/nature11058
Sustained translational repression by eIF2¦Á-P mediates prion neurodegeneration
Julie A. Moreno, Helois Radford, Diego Peretti, et al. 
The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer¡¯s, Parkinson¡¯s and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the ¦Á-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2¦Á-P levels are seen in patients with Alzheimer¡¯s, Parkinson¡¯s and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2¦Á-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2¦Á-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2¦Á-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2¦Á-P dephosphorylation, increased eIF2¦Á-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.


4. Ƥ·ô¸½¼þµÄÐÄÀíÔÙÉú¼°Æä¶ÔÔÙÉúҽѧÐÄÀíѧµÄÒâÒå
¡¾¶¯Ì¬¡¿×î½üһƪÃÀ¹úÓ¢¹ų́Íå¿ÆÑ§¼ÒºÏ×÷½ÒÏþµÄ×ÛÊöÎÄÕÂÌÖÂÛÁËÆ¤·ô¸½¼þµÄÐÄÀíÔÙÉú¼°Æä¶ÔÔÙÉúҽѧÐÄÀíѧµÄÒâÒå¡£Ö»¹ÜÔÙÉúҽѧÕվɸöÏà¶Ô½ÏÁ¿ÐµĿ´·¨£¬¸÷È˶¼ÖªµÀ¶¯ÎïÄܹ»Í¨¹ýÕý³£µÄÐÄÀíÔÙÉúÀú³Ì°´ÆÚÖØÉúÍ··¢ºÍÓðë¡£¸ÃÎÄÕÂÉó²éÁËÊýʮƪ¹ØÓÚÕý³£ÐÄÀíÔÙÉú¡ª¶¯ÎïÖÕÉú¾ßÓеÄÔÙÉú³¤¶ø·Ç¶ÔËðÉ˵ķ´Ó¦¡ªµÄÂÛÎÄ¡£ÕâÖÖÔÙÉúÔÚ¶¯ÎïÉú³¤µÄ²î±ð½×¶ÎÊÊʱµØ±¬·¢£¨ºÃ±ÈÄñÀàµÄ»»Óð룬СÄк¢µÄϸÈíÃæ²¿Ã«·¢ÔÚÇà´ºÆÚ±»÷×Ã«Ìæ»»£©¡£ÕâЩת±äÊǶÔÏñëÄÒ×Ô¼ºµÄÐÄÀíÕâÀàÄÚÔÚÒòËØ»òÇéÐεÈÍâÔÚÒòËØµÄÏìÓ¦£¬µ«ÕâЩÕý³£×ª±äµÄÄÚÔÚ»úÖÆ»¹²»ÇåÎú¡£Ã«ÄÒÖеĸÉϸ°ûÔö½øÃ«·¢ºÍÓðëµÄÔÙÉú£¬µ«Ñо¿Ö°Ô±ÏÖÔÚ»¹²»ÖªµÀÔõÑùÖ¸µ¼ÕâЩϸ°ûÐÎ³ÉÆ¤·ô¸½¼þµÄÕý³£ÐÎ̬³ß´çºÍ¶¨Î»£¬Ò²²»ÖªµÀÔõÑùÈÃÊÜÉ˺óÐγɰ̺۵ÄÈËÌ寤·ôÔÙ³¤³öë·¢¡£ÕâЩδ֪µÄ֪ʶºÜ¿ÉÄܲØÓÐÓмÛÖµµÄÏßË÷Ö¸µ¼ÎÒÃÇÏàʶÔõÑùÉ˺óÔÙÉú¸üÖØ´ó¸üÓмÛÖµµÄ½á¹¹ÈçÊÖÖ¸ºÍ½ÅÖº¡£

¡¾µãÆÀ¡¿ ¸Ã×ÛÊö×ܽáÁËÏÖÔÚÔÙÉúÉúÎïѧµÄÉú³¤ºÍ¾ÖÏÞ£¬Ò²ÆÚ´ý¸üÉîÈëµÄÑо¿Õý³£µÄÔÙÉúÐÄÀí»úÖÆÄܹ»×ÊÖúÔÚ»úÌåÊÜÉ˺óÔÙÉú³ö±Èë·¢¸üÖØ´óµÄÐÄÀí½á¹¹¡£ËûÃÇÏëµ½µÄÕâЩÊÂÇéÔÚÈËÌåÔÙÉú»Ø¸´¿ÆÑ§µÄÁìÓòÀï¶¼ÒѳÉΪÏÖʵÁË£¬Ö»¹Ü¸üÉîÈëµÄÔÙÉúÆøÖÆ»¹ÐèÒª¼ÌÐøÑо¿¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Physiology, April 2012 27:61-72 DOI: 10.1152/physiol.00028.2011
Physiological Regeneration of Skin Appendages and Implications for Regenerative Medicine Physiology
Cheng-Ming Chuong, Valerie A. Randall, Randall B. Widelitz, et al.
The concept of regenerative medicine is relatively new, but animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. Here, we focus on 1) how extrafollicular environments can regulate hair and feather stem cell activities and 2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.


5. ¾ÙÐÐÌǽͽâµÄÉÙÍ»½ºÖÊϸ°ûά»¤ËèÇʺÍÖáÍ»µÄºã¾ÃÍêÕûÐÔ
¡¾¶¯Ì¬¡¿ÈËÄÔÖÐÔ¼1000ÒÚµÄÉñ¾­Ï¸°ûÖ§³ÖÎÒÃǵÄ˼Ë÷¸ÐÊܺÍÐж¯¡£ÕâЩϸ°û³¤µÄÉñ¾­ÏËά¼´ÖáÍ»½«µçÐźÅת´ïµ½´óÄÔºÍÉíÌåµÄÔ¶¶Ë¡£ÕâÖÖͨѶÐèÒª´ó×ڵı»ÒÔΪÊÇÀ´×ÔÌǵÄÄÜÁ¿¡£ÖáÍ»Ó뽺ÖÊϸ°ûϸÃÜÏàÁ¬£¬ºóÕßÓò»µ¼µçµÄËèÇʰüÈÆÖáÍ»²¢Ö§³ÖÖáÍ»µÄºã¾Ã¹¦Ð§¡£×î½üÒ»¸ö¹ú¼Ê¿ÆÑÐÍŶӷ¢Ã÷ÁËÒ»ÖÖ¿ÉÄܵĻúÖÆ£¬ÕâЩÄÔÖеĽºÖÊϸ°û½èÒÔÖ§³ÖÖáÍ»²¢Î¬³ÖÖáÍ»µÄºã¾ÃÉúÑÄ¡£ÉÙÍ»½ºÖÊϸ°ûÊÇÖÐÊàÉñ¾­ÏµÍ³ÖÐÒ»×é¸ß¶ÈÌØÒìÐԵĽºÖÊϸ°û£¬ÈÏÕæÐγɸ»º¬Ö¬·¾µÄ°üÈÆÖáÍ»µÄËèÇʾøÔµ²ã£¬µ«ËèÇʵĹ¦Ð§²»Ö¹ÊǾøÔµ£¬ËüÄÜÔöÌíÖáÍ»µÄÐźÅת´ïËÙÂÊ£¬ïÔÌ­ÄÜÁ¿ÏûºÄ¡£ËèÇʵļ«¶ËÖ÷ÒªÐÔÔÚÒò¾øÔµ²ã¹¦Ð§È±Ïݵ¼Öµļ²²¡Èç¶à·¢ÐÔÓ²»¯ÖеÃÒÔÌåÏÖ¡£¶øÉÙÍ»½ºÖÊϸ°ûµÄ¹¦Ð§Ò²Ô¶²»Ö¹ÌṩËèÇʲã¡£¸ÃÍŶӷ¢Ã÷¿µ½¡µÄ½ºÖÊϸ°ûÊÇÖáÍ»ºã¾Ã¹¦Ð§ºÍ´æ»îµÄÎÞ¹ØËèÇÊÌìÉúµÄ±ØÐèÒòËØ¡£½ºÖÊϸ°û¼ÓÈëÁËÉñ¾­ÏËάµÄÄÜÁ¿²¹¸ø£¬¿µ½¡µÄ³ÉÊ콺ÖÊϸ°ûÖ÷Ҫͨ¹ýÌǽͽⱬ·¢ÄÜÁ¿£¬ÆäÓÅÊÆÔÚÓÚÌǽͽâÀú³ÌÖеĴúл²úÆ·¿ÉÒÔÓÃÓÚËèÇʺϳɣ¬²¢ÇÒÔÚÉÙÍ»½ºÖÊϸ°ûÖÐÌìÉúµÄÈéËáÄܹ»´«¸øÖáÍ»ÓÃÓÚÖáÍ»×ÔÉíÏßÁ£ÌåµÄÄÜÁ¿Éú²ú¡£ 
¡¾µãÆÀ¡¿ ¸ÃÑо¿·¢Ã÷µÄ½ºÖÊϸ°ûºÍÖáÍ»ÔÚÐÄÀíÉϵÄÏ໥ÅäºÏºÍЭµ÷֤ʵ×÷Ϊ»úÌ幦ЧµÄÕý³£Ê©Õ¹±ØÐèÕûÌåµÄÅäºÏºÍЭµ÷£¬²î±ðµÄ½á¹¹ÔÚ²î±ðµÄÐÄÀíÌõ¼þϸ÷×Ô¾ßÓÐά³ÖÉúÃü¹¦Ð§Õý³£µÄÖ÷Òª×÷Óá£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature, 2012; DOI: 10.1038/nature11007
Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
Ursula F¨¹nfschilling, Lotti M. Supplie, Don Mahad, et al. 
Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon¨Cglia interactions by generating conditional Cox10(protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome coxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon¨Cglia metabolic coupling serves a physiological function.

 

6. »ùÒòÁÆ·¨ÖÎÁÆÊ§´ÏµÄDZÁ¦ºÍ¾ÖÏÞ
¡¾¶¯Ì¬¡¿ÃÀ¹ú¿ÆÑ§¼Ò×î½ü·¢Ã÷ÔÚÄêÓ×ÀÏÊóµÄ¶úÎÏÒýÈëAtoh1»ùÒò£¨Ã«Ï¸°û·Ö½âÒò×Ó£©Äܹ»ÓÕµ¼Éú³¤¸ü¶àµÄÌý¾õëϸ°û¡£ÕâЩÐÂÉúµÄëϸ°ûÏñÕý³£Ã«Ï¸°ûÒ»Ñù±¬·¢µçÐźŲ¢ÓëÉñ¾­Ï¸°ûÏàÁ¬£¬¿ÉÊÇÔÚÀÏÊóÁ½ÖÜ´óÒÔºóÇà´ºÆÚ֮ǰÒýÈëAtoh1»ùÒòÏÕЩûÓÐ×÷Óá£ÕâԤʾ×ÅÔÚ³ÉÄêÈËÓ¦ÓÃÀàËÆµÄÁÆ·¨Ò²²»»áÓÐÓá£

¡¾µãÆÀ¡¿ÔÚ»ùÒòË¢ÐµĶ¯ÎïÄ£×ÓÉíÉÏ·¢Ã÷µÄÕ÷Ïó²¢·×Æç¶¨·´Ó¦ÔÚÕý³£¶¯ÎïÉíÉÏ£¬¸ü²»±ØËµÓëÈËÌåµÄ·´Ó¦Óжà´óÏà¹ØÐÔ¡£²¢ÇÒ´ÓÓ¤Ó×¶ù¶¯Îï¾ÙÐеĻùÒò¸ÉÔ¤ÔÚ´¦Öóͷ£³ÉÄ궯Îï¼²²¡Ê±Ò²²»¿ÉÐУ¬²¢ÇÒ»¹±£´æ»ùÒò¸ÉÔ¤ºóµÄÆäËû²»¿ÉÔ¤ÁϵÄЧ¹û¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Journal of Neuroscience, 2012; 32 (19): 6699 DOI:10.1523/JNEUROSCI.5420-11.2012
Atoh1 Directs the Formation of Sensory Mosaics and Induces Cell Proliferation in the Postnatal Mammalian Cochlea In Vivo
M. C. Kelly, Q. Chang, A. Pan, X. Lin, P. Chen.

Hearing impairment due to the loss of sensory hair cells is permanent in humans. Considerable interest targets the hair cell differentiation factor Atoh1 as a potential tool with which to promote hair cell regeneration. We generated a novel mouse model to direct the expression of Atoh1 in a spatially and temporally specific manner in the postnatal mammalian cochlea to determine the competency of various types of cochlear epithelial cells for hair cell differentiation. Atoh1 can generate cells in young animals with morphological, molecular, and physiological properties reminiscent of hair cells. This competency is cell type specific and progressively restricted with age. Significantly, Atoh1 induces ectopic sensory patches through Notch signaling to form a cellular mosaic similar to the endogenous sensory epithelia and expansion of the sensory mosaic through the conversion of supporting cells and nonautonomous supporting cell production. Furthermore, Atoh1 also activates proliferation within the normally postmitotic cochlear epithelium. These results provide insight into the potential and limitations of Atoh1-mediated hair cell regeneration.

ÍøÕ¾µØÍ¼