ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨Æßʮһ£©
£¨12.19-12.25/2011£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úÐÂ
¡¡¡¡Ö÷ÒªÄÚÈÝ£º²úǰιʳ¸Ê¶ÌÇ×èÖ¹ÐÂÉúÀÏÊóµÄÏÈÌìÌÇ»ù»¯´úл¼²²¡£»Ê§È¥PtenµÄ»ùÖÊÏËάĸϸ°ûÔö½øÖ×ÁöÉú³¤£»»ùÓÚÄÉÃ×Ïߵĵ¥Ï¸°ûÄÚÊÓ¾µ£»Òþ»¨É«Ëظ¨ÊÜÌå½éµ¼½ÚÂÉÐÔÒÖÖÆÌÇÆ¤Öʼ¤ËØÊÜÌ壻HIF-1¦Áȱʧ¼ÓËÙ±íÆ¤ÀÏ»¯Ó°ÏìÔÙÉÏÆ¤»¯Éú£»°©Ï¸°ûÄÜÎÞÏÞÆÆËéµÄ»úÀí¡£
¡¡¡¡½¹µã¶¯Ì¬£º»ùÓÚÄÉÃ×Ïߵĵ¥Ï¸°ûÄÚÊÓ¾µ¡£
1. ²úǰιʳ¸Ê¶ÌÇ×èÖ¹ÐÂÉúÀÏÊóµÄÏÈÌìÌÇ»ù»¯´úл¼²²¡
¡¾¶¯Ì¬¡¿
¡¡¡¡ÌÇ»ù»¯IaÏÈÌì¼²²¡ÊÇÓɱàÂëÁ×Ëá¸Ê¶ÌÇø2£¨PMM2£©µÄ»ùÒòÍ»±äÒýÆðµÄÌÇ´úлÔÓÂÒ£¬Ôì³É¶àϵͳµÄ¼²²¡°éÓÐÑÏÖØµÄ¾«ÉñÔ˶¯ºÍÖÇÁ¦Õϰ¡£µÂ¹ú¿ÆÑ§¼ÒÓÃÒ»ÖÖ´ÎÐÎ̬ͻ±äµÄÀÏÊóÄ£×Ó£¬ÔÚ½»ÅäǰºÍÓÐÉíÆÚͨ¹ýÒûË®ËÇιĸÊó¸Ê¶ÌÇ£¬Æä×ÓÅ®×ÝȻЯ´øÉÏÊöÏÈÌì¼²²¡µÄ»ùÒòÍ»±ä£¬Ò²ÄÜÕý³£·¢Óý£¬Õ½Ê¤Á˸ò¡¶ÔÅßÌ¥µÄΣÏÕ¡£¸ÃЧ¹ûÍ»ÏÔÁËÅßÌ¥·¢ÓýÖÐÌÇ»ù»¯µÄÐëÒª×÷Ó㬿ÉÄÜ»áÒý³öÖÎÁƸÃÖÖ¼²²¡µÄÐÂÒªÁì¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿ÓÐÖúÓÚ¸üºÃµÄÃ÷È·ÕâÒ»´úл¼²²¡µÄ·Ö×Ó»úÀíºÍÅßÌ¥·¢ÓýµÄÒªº¦°ì·¨£¬ÓпÉÄܵÚÒ»´ÎΪ¸Ã¼²²¡ÕÒµ½ÖÎÁÆÒªÁì¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Medicine, 2011; DOI:10.1038/nm.2548
Successful prenatal mannose treatment for congenital disorder of glycosylation-Ia in mice
Anette Schneider, Christian Thiel, Jan Rindermann, et al.
Congenital disorder of glycosylation-Ia (CDG-Ia, also known as PMM2-CDG) is caused by mutations in the gene that encodes phosphomannomutase 2 (PMM2, EC 5.4.2.8) leading to a multisystemic disease with severe psychomotor and mental retardation. In a hypomorphic Pmm2 mouse model, we were able to overcome embryonic lethality by feeding mannose to pregnant dams. The results underline the essential role of glycosylation in embryonic development and may open new treatment options for this disease.
2. ʧȥPtenµÄ»ùÖÊÏËάĸϸ°ûÔö½øÖ×ÁöÉú³¤
¡¾¶¯Ì¬¡¿
¡¡¡¡»ùÖÊÏËάĸϸ°ûµÄPTEN£¨Á×Ëáø£©±í´ïÒÖÖÆÁËÈéÏÙÉÏÆ¤°©µÄÉú³¤£¬µ«»úÀíδÃ÷¡£Ê¹ÓÃÂѰ×ÖÊ×éѧºÍ±í´ïͼÆ×²â¶¨£¬ÃÀ¹ú¿ÆÑ§¼ÒÏÔʾÈéÏÙ»ùÖÊÏËάĸϸ°ûȱʧPten»ùÒò»á¼¤»îÖ°©µÄÉøÍ¸ÂѰ××éе÷΢ÇéÐÎÖÐÆäËûÀàÐÍϸ°ûµÄ×ªÂ¼ÖØ±à³Ì¡£Ïµ÷miR-320ºÍÉϵ÷ÆäÒ»¸öÖ±½Ó°ÐµãETS2ÊÇPtenȱʧµÄ»ùÖÊÏËάĸϸ°ûÓÕµ¼Ö°©µÄÉøÍ¸ÂѰ××éµÄÒªº¦ÊÂÎñ£¬Ö°©µÄÉøÍ¸ÂѰ××éת¶øÔö½øÖ×Áö±¬·¢ºÍÖ×Áöϸ°ûÇÖÏ®¡£ËûÃÇ·¢Ã÷Ö×Áö΢ÇéÐεÄÏËάĸϸ°ûÒòȱʧPten¶øµ¼ÖÂmiR-320ÊýÄ¿¾ç½µ£¬½ø¶øÊ¹ETS2ÂѰ×ÊýÄ¿´óÕÇ£¬×îÖÕ´ó×ÚµÄETS2ÂѰ׼¤»îÐí¶à»ùÒò£¬Ê¹ÏËάĸϸ°ûÉøÍ¸50¶àÖÖÒò×Ӵ̼¤ÁÚ½ü°©Ï¸°ûµÄÔöÖ³ºÍÇÖÏ®£¬Ò²ÒýÆðÖ×ÁöÖкÍÕû¸öÈéÏÙÀïµÄÆäËûÏËάĸϸ°ûÖØ±à³Ì¡£Pten¨CmiR-320¨CEts2µ÷ÀíµÄÉøÍ¸ÂѰ××éµÄ±í´ïÇøÍÑÀëÁËÈËÌåÕý³£µÄÈéÏÙ»ùÖÊ×éÖ¯ÓëÖ×Áö»ùÖÊ£¬²¢ÓëÈéÏÙ°©µÄ¸´·¢Ç¿ÁÒÏà¹Ø¡£¸ÃÑо¿Åú×¢miR-320ÊÇÔÚ»ùÖÊÏËάĸϸ°ûÖÐÖØ×éÖ×Áö΢ÇéÐβ¢×è°Ö×ÁöÉú³¤µÄPtenÖ×ÁöÒÖÖÆÖáµÄÒ»¸öÒªº¦²¿·Ö¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Ôö½øÁ˹ØÓÚÖ×Áö΢ÇéÐÎÔÚÖ×ÁöÉú³¤ÖеÄ×÷ÓõÄÃ÷È·£¬²¢Îª·ÀÖΰ©Ö¢ÌṩÁËеÄÑо¿Í¾¾¶¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Cell Biology, 2011; DOI: 10.1038/ncb2396
Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320
Bronisz, J. Godlewski, J. A. Wallace, et al.
PTEN (Phosphatase and tensin homolog deleted on chromosome 10) expression in stromal fibroblasts suppresses epithelial mammary tumours, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2) are critical events inPten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumour angiogenesis and tumour-cell invasion. Expression of the Pten¨CmiR-320¨CEts2-regulated secretome distinguished human normal breast stroma from tumour stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumour-suppressor axis that acts in stromal fibroblasts to reprogramme the tumour microenvironment and curtail tumour progression.
3. »ùÓÚÄÉÃ×Ïߵĵ¥Ï¸°ûÄÚÊÓ¾µ
¡¾¶¯Ì¬¡¿
¡¡¡¡»ùÓÚÄÉÃ×ÏߺÍÄÉÃ׹ܵÄÄܹ»Çå¾²´©Í¸Ï¸°ûĤ½øÈëϸ°ûµÄѸËÙһά̽ÕëÔÚ¸ßÇø·ÖÂʸßͨÁ¿µÄ»ùÒò¼°Ò©ÎïµÝËÍ£¬ÉúÎï¸Ð²âºÍµ¥Ï¸°ûµçÐÄÀíѧÖÐÓÐDZÔÚÓÃ;¡£¿ÉÊÇ£¬ÕâЩ̽ÕëÔڴ⨳¤Ë®Æ½¿çĤµÄ¹âͨѶÖеÄʹÓû¹Êܵ½ÏÞÖÆ¡£ÃÀ¹ú¿ÆÑ§¼ÒµÄ×îÐÂÑо¿ÏÔʾÔÚ¹âÏË×¶ÐμâÉÏÌù¸½Ò»¸öÄÉÃ×Ïß²¨µ¼¹ÜÄܹ»½«¿É¼û¹âÒýÈë»îµÄ²¸È鶯Îïϸ°ûÄÚµÄÇøÓò£¬Ò²Äܹ»¼ì²âÀ´×ÔÑÇϸ°ûÇøÓòµÄ¹âÐźŲ¢Óи߿ռäÇø·ÖÂÊ¡£²¢ÇÒ£¬½«ÄÚÊÓ¾µ²åÈëϸ°ûÄÚ¼°Ö¸µ¼¼¤¹âµÄ¹âÕÕûÓÐÔÚϸ°ûÄÚÒýÆðÏÔ×Ŷ¾ÐÔ¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÊÖÒյķºÆðʹµÃÖ±½ÓÈâÑÛÊӲ쵥¸ö»îϸ°ûÄÚÑÇϸ°ûˮƽµÄ½á¹¹ºÍÉúÔËÆø¶¯³ÉΪ¿ÉÄÜ¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Nanotechnology, 2011; DOI: 10.1038/nnano.2011.226
Nanowire-based single-cell endoscopy
Ruoxue Yan, Ji-Ho Park, Yeonho Choi, et al.
One-dimensional smart probes based on nanowires and nanotubes that can safely penetrate the plasma membrane and enter biological cells are potentially useful in high-resolution, and high-throughput, gene and drug delivery, biosensing, and single-cell electrophysiology. However, using such probes for optical communication across the cellular membrane at the subwavelength level remains limited. Here, we show that a nanowire waveguide attached to the tapered tip of an optical fibre can guide visible light into intracellular compartments of a living mammalian cell, and can also detect optical signals from subcellular regions with high spatial resolution. Furthermore, we show that through light-activated mechanisms the endoscope can deliver payloads into cells with spatial and temporal specificity. Moreover, insertion of the endoscope into cells and illumination of the guided laser did not induce any significant toxicity in the cells.
4. Òþ»¨É«Ëظ¨ÊÜÌå½éµ¼½ÚÂÉÐÔÒÖÖÆÌÇÆ¤Öʼ¤ËØÊÜÌå
¡¾¶¯Ì¬¡¿
¡¡¡¡²¸È鶯ÎïµÄ´úлÓи߶ȵĽÚÂÉÐÔ£¬Éæ¼°ºË¼¤ËØÊÜÌåµÄÖ÷Òª¼¤ËØ»ØÂ·ÌåÏÖ³ö»¥Í¨µÄÖçҹѻ·¡£È»¶ø£¬ºÏºõÂß¼µÄÚ¹Êͺ˼¤ËØÊÜÌåÓëÉúÎïÖÓ֮е÷µÄ»úÀí»¹²»ÇåÎú¡£ÃÀ¹úµÂ¹úºÍºÉÀ¼µÄ¿ÆÑ§¼ÒµÄ×îÐÂÑо¿ÏÔʾÁ½¸öÐÄÀí½Ú×àµÄ¸¨ÊÜÌåÒþ»¨É«ËØ1ºÍ2Äܹ»ÒÔÅäÌåÒÀÀµµÄ·½·¨ÓëÌÇÆ¤Öʼ¤ËØÊÜÌåÏ໥×÷Ó㬲¢ÔÚÀÏÊóÅßÌ¥ÏËάĸϸ°ûÖÐÕûÌå¸Ä±ä¶ÔÌÇÆ¤Öʼ¤ËصÄת¼·´Ó¦£ºÒþ»¨É«ËØÈ±Ê§¼«´óµØïÔÌÁË»ùÒòÒÖÖÆ£¬Ô¼ÄªÊ¹µØÈûÃ×ËÉÓÕµ¼µÄ»ùÒòÊýÄ¿·±¶£¬ÌáÐÑÒþ»¨É«ËØÆÕ±éµÄÞ׿¹ÌÇÆ¤Öʼ¤ËØÊÜÌ弤»î²¢Ôö½øÆäÒÖÖÆ¡£ÔÚÀÏÊóÖУ¬»ùÒòȱʧÒþ»¨É«ËØ1ºÍ/»ò2»áµ¼ÖÂÆÏÌÑÌÇÄÍÊܺÍѪѻ·ÖнṹÐԵĸßˮƽµÄƤÖÊͪ£¬ÌáÐÑÏàñîÁªµÄÉöÉÏÏÙÖáÒÖÖÆµÄïÔ̺ÍÌÇÆ¤Öʼ¤ËØÔÚ¸ÎÔàÖÐת»î»¯µÄÔöÌí¡£´Ó»ùÒòÉÏ˵£¬Òþ»¨É«ËØ1ºÍ2 ÒÔ¼¤ËØÒÀÀµµÄ·½·¨ÓëÁ×ËáÏ©´¼±ûͪËáôȼ¤Ã¸1Ôö½ø×ÓÖÐÌÇÆ¤Öʼ¤ËØ·´Ó¦ÒòËØÏà¹ØÁª£¬²¢ÇÒµØÈûÃ×ËÉÓÕµ¼µÄÁ×ËáÏ©´¼±ûͪËáôȼ¤Ã¸1»ùÒòµÄת¼ÔÚȱʧÒþ»¨É«ËصĸÎÔàÖÐÏÔÖøÔöÌí¡£ÕâЩЧ¹ûÅú×¢±£´æÒ»ÖÖÌØÊâ»úÖÆ£¬½è´ËÒþ»¨É«Ëؽ«ÉúÎïÖÓÔ˶¯ºÍÊÜÌå°Ð»ùÒòÓëÖ§³ÖÕý³£´úлƽºâµÄÖØ´ó»ùÒò»ØÂ·ÏàźÁª¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿·¢Ã÷ÁËÉíÌåÉúÎïÖÓºÍÌÇ´úлϵͳ֮¼äȱʧµÄ»·½Ú£¬¿ÉÄÜÓÐÖúÓÚÚ¹ÊÍ˯ÃߺÍÓªÑø´úл֮¼äµÄ¹ØÁª¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
Nature. 2011, 480(7378):552-6. doi:10.1038/nature10700.
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
Katja A. Lamia, Stephanie J. Papp, Ruth T. Yu, et al.
Mammalian metabolism is highly circadian and major hormonal circuits involving nuclear hormone receptors display interlinked diurnal cycling. However, mechanisms that logically explain the coordination of nuclear hormone receptors and the clock are poorly understood. Here we show that two circadian co-regulators, cryptochromes 1 and 2, interact with the glucocorticoid receptor in a ligand-dependent fashion and globally alter the transcriptional response to glucocorticoids in mouse embryonic fibroblasts: cryptochrome deficiency vastly decreases gene repression and approximately doubles the number of dexamethasone-induced genes, suggesting that cryptochromes broadly oppose glucocorticoid receptor activation and promote repression. In mice, genetic loss of cryptochrome 1 and/or 2 results in glucose intolerance and constitutively high levels of circulating corticosterone, suggesting reduced suppression of the hypothalamic-pituitary-adrenal axis coupled with increased glucocorticoid transactivation in the liver. Genomically, cryptochromes 1 and 2 associate with a glucocorticoid response element in the phosphoenolpyruvate carboxykinase 1 promoter in a hormone-dependent manner, and dexamethasone-induced transcription of the phosphoenolpyruvate carboxykinase 1 gene was strikingly increased in cryptochrome-deficient livers. These results reveal a specific mechanism through whichcryptochromes couple the activity of clock and receptor target genes to complex genomic circuits underpinning normal metabolic homeostasis.
5. HIF-1¦Áȱʧ¼ÓËÙ±íÆ¤ÀÏ»¯Ó°ÏìÔÙÉÏÆ¤»¯Éú
¡¾¶¯Ì¬¡¿
¡¡¡¡ÔÚÀÏÊóºÍÈËÌåµÄƤ·ôÖУ¬È±ÑõÓÕµ¼Òò×ÓHIF-1¦ÁÊÇÔÚ±íÆ¤£¬Ö÷ÒªÊÇ»ùµ×²ãÖбí´ï¡£HIF-1¦ÁÒѱ»Ö¤ÊµÓÐÖ÷ÒªµÄϵͳÐÔ¹¦Ð§£ºÔÚÈ¥³ý±íƤÖÐHIF-1¦ÁµÄÀÏÊóÖе÷ÀíÉöÔàºìϸ°ûÌìÉúËØµÄÉú²ú£¬ÒÔ¼°±íƤÖÐHIF-1¦Á¸ß±í´ï´øÀ´µÄѪ¹ÜÐÍ¡£¿ÉÊÇ£¬HIF-1¦Á Ôڽǻ¯Ï¸°ûÐÄÀíÖеľֲ¿×÷Óû¹Ã»ÓÐÆÊÎö¡£·¨¹ú¿ÆÑ§¼ÒÓÃÇóý°ÐÏò½Ç»¯Ï¸°ûµÄHIF-1¦Á»ùÒòµÄÀÏÊóÄ£×ÓÀ´Ñо¿HIF-1¦ÁÔÚ±íÆ¤ÖеÄ×÷Óá£ÕâЩÀÏÊ󯤷ôÑÓ³Ù·ºÆðƤ·ô±íÐÍ£¬²¢ÌåÏÖΪƤ·ôήËõºÍðþÑ÷·¢Ñ×£¬²¿·ÖÔµ¹ÊÔÓÉÊÇÇ£Éæ²ãÕ³Á¬ÂѰ×332£¨Ln-332£©ºÍÕûºÏËØµÄ»ùµ×Ĥʧµ÷¡£Ñо¿ÕßÃÅÒ²ÓÃÖØÐÞµÄ±íÆ¤Ñо¿ÁËÀÏÊóʵÑéЧ¹ûÓëÈËÌ寤·ôµÄÏà¹ØÐÔ£¬Ð§¹ûÏÔʾÔÚÈËÌå½Ç»¯Ï¸°ûÖÐÒÖÖÆHIF-1¦Á»ùÒò¹ÊÕÏÁËÐγÉÄÜ´æ»îµÄÖØÐÞÈËÌå±íƤ¡£Ëæ×ÅHIF-1¦Á¾²Ä¬¶ø½µµÍµÄ½Ç»¯Ï¸°ûÉú³¤Ç±Á¦ÓëLn-322 ¡¢ ¦Á6 ºÍ¦Â1ÕûºÏËØ±í´ï µÄ½µµÍÓйء£×ܵÄ˵À´£¬ÕâЩЧ¹ûÅú×¢HIF-1¦ÁÔÚÆ¤·ôÎÈÌ¬ÌØÊâÊÇ±íÆ¤ÀÏ»¯Ê±´úÊÎÑÝÒ»¶¨µÄ½ÇÉ«¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Õ¹ÏÖÁËHIF-1¦ÁÔÚ±íÆ¤ÐγÉÖеÄ×÷Óã¬ÓÐÖúÓÚ½øÒ»²½ÏàʶƤ·ôµÄ·¢ÓýºÍÐÄÀí¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
J Cell Sci, 2011, doi:10.1242/jcs.082370
Loss of epidermal hypoxia-inducible factor-1¦Á accelerates epidermal aging and affects re-epithelialization in human and mouse
Hamid Reza Rezvani, Nsrein Ali, Martin Serrano-Sanchez, et al.
In mouse and human skin, HIF-1¦Á is constitutively expressed in the epidermis, mainly in the basal layer. HIF-1¦Á has been shown to have crucial systemic functions: regulation of kidney erythropoietin production in mice with constitutive HIF-1¦Á epidermal deletion, and hypervascularity following epidermal HIF-1¦Á overexpression. However, its local role in keratinocyte physiology has not been clearly defined. To address the function of HIF-1¦Á in the epidermis, we used the mouse model of HIF-1¦Á knockout targeted to keratinocytes (K14-Cre/Hif1aflox/flox). These mice had a delayed skin phenotype characterized by skin atrophy and pruritic inflammation, partly mediated by basement membrane disturbances involving laminin-332 (Ln-332) and integrins. We also investigated the relevance of results of studies in mice to human skin using reconstructed epidermis and showed that HIF-1¦Á knockdown in human keratinocytes impairs the formation of a viable reconstructed epidermis. A diminution of keratinocyte growth potential, following HIF-1¦Á silencing, was associated with a decreased expression of Ln-322 and ¦Á6 integrin and ¦Â1 integrin. Overall, these results indicate a role of HIF-1¦Á in skin homeostasis especially during epidermal aging.
6. °©Ï¸°ûÄÜÎÞÏÞÆÆËéµÄ»úÀí
¡¾¶¯Ì¬¡¿
¡¡¡¡µÂ¹ú¡¢ÈðµäºÍÈðÊ¿µÄ¿ÆÑ§¼Ò×î½ü·¢Ã÷Á˰©Ï¸°ûÄÜÎÞÏÞÆÆËéµÄ»úÀí£¬Õ⽫ÓÐÖúÓÚ°ÐÏò°©Ö¢ÖÎÁÆ¡£¾Íϸ°ûÆÆËé¶øÑÔ£¬¶ñÐÔÖ×Áöϸ°ûÍ»ÆÆÁËÏÕЩËùÓмÍÂÉ¡£ÕâÖÖϸ°ûÔÚûÓÐÍⲿÐźÅʱ£¬ÈÔÄÜÆÆË飬ÕâЩϸ°ûͨ¹ýÅÔ·¶ø»ñµÃ¹ØÓÚÉú³¤µÄÍⲿÐźţ¬ÒÔÊÇÈÔÄÜÔöÖ³¡£¹ØÓÚ°©Ï¸°ûÄÜÎÞÏÞÆÆËéµÄ»úÖÆ£¬ÖÁ½ñ¿ÆÑ§¼ÒÃÇ»¹²»ÊǺÜÇåÎú¡£¸ÃÑо¿µÄÑо¿Ö°Ô±·¢Ã÷ÁËÁ½¸öÒªº¦Òò×ÓµÄ×÷Ó㬾ÍÊÇc-MycºÍSIRT1£¬ÔÚ°©Ï¸°ûÖУ¬Ç°ÕßÄÜÕõÍÑϸ°ûÄڵĿØÖÆ»úÖÆ£¬´Ùʹ°©Ï¸°ûÆÆËé¡£ËûÃÇ·¢Ã÷¸ß¶ÈȺ¼¯µÄc-MycÂѰ׿ɼ¤»îÒ»ÖÖÒÖÖÆÏ¸°ûÐàÂõºÍéæÃüµÄøSIRT1£¬¶øÕâÖÖøÓÖ¿É·´×÷ÓÃÓÚc-MycÂѰף¬ÔÆÔÆÐγÉÒ»¸ö»ØÂ·£¬Áîc-MycÂѰ׺ÍSIRT1øԽÀ´Ô½¶à£¬×îÖÕ´Ùʹ°©Ï¸°ûÎÞÏÞÆÆË顣֮ǰµÄÑо¿Åú×¢SIRT1ÂѰ×ÔÚ³¤ÊÙ£¬ÌÇ´úл£¬ÒÔ¼°ÒȵºËØÉøÍ¸Àú³ÌÖÐÊÎÑÝÁËÖ÷Òª½ÇÉ«¡£
¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Õ¹ÏÖÑÓÉìϸ°ûÊÙÃüÓ방ϸ°ûÉú³¤Ö®¼äµÄ¹ØÁª£¬Ò²Ìá³öÁËÒ»ÖÖÖÎÁư©Ö¢µÄабêϵͳ£¬Î´À´ÓÐÖúÓÚ¿ª·¢ÐÂÐÍÖÎÁÆÒªÁì¡£
¡¾²Î¿¼ÂÛÎÄ¡¿
PNAS 2011, doi:10.1073/pnas.1105304109
The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop
Antje Menssen, Per Hydbring, Karsten Kapelle, et al.
Silent information regulator 1 (SIRT1) represents an NAD+-dependent deacetylase that inhibits proapoptotic factors including p53. Here we determined whether SIRT1 is downstream of the prototypic c-MYC oncogene, which is activated in the majority of tumors. Elevated expression of c-MYC in human colorectal cancer correlated with increased SIRT1 protein levels. Activation of a conditional c-MYC allele induced increased levels of SIRT1 protein, NAD+, and nicotinamide-phosphoribosyltransferase (NAMPT) mRNA in several cell types. This increase in SIRT1 required the induction of the NAMPT gene by c-MYC. NAMPT is the rate-limiting enzyme of the NAD+ salvage pathway and enhances SIRT1 activity by increasing the amount of NAD+. c-MYC also contributed to SIRT1 activation by sequestering the SIRT1 inhibitor deleted in breast cancer 1 (DBC1) from the SIRT1 protein. In primary human fibroblasts previously immortalized by introduction of c-MYC, down-regulation of SIRT1 induced senescence and apoptosis. In various cell lines inactivation of SIRT1 by RNA interference, chemical inhibitors, or ectopic DBC1 enhanced c-MYC-induced apoptosis. Furthermore, SIRT1 directly bound to and deacetylated c-MYC. Enforced SIRT1 expression increased and depletion/inhibition of SIRT1 reduced c-MYC stability. Depletion/inhibition of SIRT1 correlated with reduced lysine 63-linked polyubiquitination of c-Myc, which presumably destabilizes c-MYC by supporting degradative lysine 48-linked polyubiquitination. Moreover, SIRT1 enhanced the transcriptional activity of c-MYC. Taken together, these results show that c-MYC activates SIRT1, which in turn promotes c-MYC function. Furthermore, SIRT1 suppressed cellular senescence in cells with deregulated c-MYC expression and also inhibited c-MYC¨Cinduced apoptosis. Constitutive activation of this positive feedback loop may contribute to the development and maintenance of tumors in the context of deregulated c-MYC.