Ò»¾º¼¼

English Ò»¾º¼¼¼¯ÍÅÆóÒµÓÊÏä

ÌìÏÂÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÁùÊ®¶þ£©

2011Äê-10ÔÂ-23ÈÕ ÈªÔ´£ºmebo

£¨10.17-10.23/2011£©
Ò»¾º¼¼¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР


¡¡¡¡Ö÷ÒªÄÚÈÝ£º´óÄÔºÍÆäËû×éÖ¯µÄÑ×Ö¢»úÖÆ²î±ð£»³¦µÀϸ¾úÔö½ø³¦²¡¶¾¸´ÖƺÍÈ«ÉíѬȾ£»SIRT2ͨ¹ýµ÷ÀíAPC/C»îÐÔά³Ö»ùÒò×éÍêÕûÐÔÒÖÖÆÖ×ÁöÐγÉ£»¦Ø-3Ö¬·¾ËáÄܹ»Ô¤·À»ò¼õ»º¹ÇÊàŦÑ×£»·¢Ã÷½á³¦°©¿ÉÄܺÍϸ¾ú±£´æÁªÏµ£»ÌØÒìÐÔË«¼Û°ë¿¹Ô­ÓÐÓÃÒÖÖÆ¹ýÃô·´Ó¦¡£

¡¡¡¡½¹µã¶¯Ì¬£º´óÄÔºÍÆäËû×éÖ¯µÄÑ×Ö¢»úÖÆ²î±ð¡£

1. ´óÄÔºÍÆäËû×éÖ¯µÄÑ×Ö¢»úÖÆ²î±ð
¡¾¶¯Ì¬¡¿
Á×֬øA2£¨PLA-2£©±»ÒÔΪÊÇ»·ÑõºÏø£¨COX£©½éµ¼µÄǰÏßÏÙËØµÄÉúÎïºÏ³ÉËùÐ軨ÉúËÄÏ©ËáµÄÖ÷Òª´úлø¡£ÃÀ¹ú¿ÆÑ§¼ÒµÄ×îÐÂÑо¿·¢Ã÷ÔÚ´óÄÔÖб£´æ²î±ðµÄ´úл;¾¶£¬µ¥õ£¸ÊÓÍõ¥Ã¸£¨MAGL£©Ë®½âÄÚÔ´ÐÔ´óÂéËØ2-»¨ÉúËÄÏ©Ëá¸ÊÓͱ¬·¢ÒýÆðÉñ¾­Ñ×Ö¢µÄǰÏßÏÙËØµÄÖ÷ҪǰÌ廨ÉúËÄÏ©Ëá¡£ÔÚÅÁ½ðÉ­ÀÏÊóÄ£×ÓÖÐÆÆËðÁËMAGLµÄÀÏÊóÌåÏÖÈëÃÔ¾­±£»¤×÷Óá£ÕâÀàÀÏÊ󲻻ᱬ·¢ÓÉϸ°ûÖÊÄÚPLA-2µ÷ÀíǰÏßÏÙËØµÄÄÚÔàÖÐCOXÒÖÖÆ¼ÁÒýÆðµÄ³öѪ¡£ÕâЩ·¢Ã÷È·ÈÏMAGLÊDzî±ðµÄ´úл½ÚµãÔÚÉñ¾­ÏµÍ³ÖÐÅþÁ¬ÄÚÔ´ÐÔ´óÂéËØºÍǰÏßÏÙËØÐźÅÍøÂ磬ÌáÐÑÒÖÖÆ¸Ãø¿ÉÄÜÊÇÒ»ÖÖеÄÇå¾²µÄÑ¹ÖÆÔì³ÉÉñ¾­±äÐÔ¼²²¡µÄ´ÙÑ×¼¶Áª·´Ó¦µÄÒªÁì¡£

¡¾µãÆÀ¡¿
¸Ã·¢Ã÷ÓÐÀûÓÚ¼ÓÉî¶ÔÉñ¾­±äÐÔ¼²²¡µÄÃ÷È·ÒÔ¼°ÌØÒìÐÔµÄÕë¶ÔÉñ¾­²¡±äµÄ¸üÇå¾²µÄÖÎÁÆÊֶΡ£¿ÉÊÇÓÉÓÚÐźÅϵͳµÄÍøÂçµ÷ÀíÊǶàͨ·¶à½Úµã²¢ÊÜÉíÌåͳһµ÷ÖÆµÄ£¬Õë¶Ô¼òµ¥½ÚµãµÄ¸ÉÔ¤Õ½ÂÔ×ÜÊÇʧ֮ΪȨÒËÖ®¼Æ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Science, 20 October 2011 DOI: 10.1126/science.1209200
Endocannabinoid Hydrolysis Generates Brain Prostaglandins That Promote Neuroinflammation
Daniel K. Nomura, Bradley E. Morrison, Jacqueline L. Blankman, et al.
Phospholipase A2(PLA2) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)¨Cmediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA2. These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.


2. ³¦µÀϸ¾úÔö½ø³¦²¡¶¾¸´ÖƺÍÈ«ÉíѬȾ
¡¾¶¯Ì¬¡¿
³¦µÀ¾úȺ×ÊÖúÔö½øËÞÖ÷¿µ½¡²¢ÏÞÖÆ²¡Ô­¾ú×ÌÉú£¬µ«¶Ô³¦µÀ²¡¶¾µÄÓ°Ï컹֪֮ÉõÉÙ¡£ÃÀ¹ú¿ÆÑ§¼Ò×î½üµÄÑо¿Í¨¹ýÓÿ¹ÉúËØÉ¨³ýÀÏÊ󳦵À¾úȺ£¬´Ëºó½ÓÖÖ¼¹Ëè»ÒÖÊÑײ¡¶¾£¨Ò»ÖÖ³¦µÀ²¡¶¾£©£¬ÕâÖÖÀÏÊó½ÏÁ¿½ûÖ¹Ò׵ü¹Ëè»ÒÖÊÑ×£¬³¦µÀÄÚ²¡¶¾¸´ÖÆÒ²×îµÍ¡£¶øÌ»Â¶ÓÚϸ¾ú»òÆäº¬ÓÐN-ÒÒõ£°±»ùÆÏÌÑÌǵÄÍâò¶àÌÇ£¬°üÀ¨Ö¬¶àÌǺÍëľÛÌÇ£¬»áÔöÇ¿¼¹Ëè»ÒÖÊÑײ¡¶¾µÄѬȾÐÔ¡£ËûÃÇ·¢Ã÷¼¹Ëè»ÒÖÊÑײ¡¶¾ÓëÖ¬¶àÌÇ͎ᣬ¶ø¸Ã²¡¶¾Ì»Â¶ÓÚϸ¾úÔöÇ¿ÁËËÞÖ÷ϸ°ûµÄÅþÁ¬ºÍѬȾ¡£Ò»ÖÖ²»Ïà¹ØµÄ³¦µÀ²¡¶¾ºô³¦¹Â²¡¶¾µÄ·¢²¡Ò²ÔÚÓ㦵Àϸ¾úʱ¸üÑÏÖØ¡£ÕâЩЧ¹ûÏÔʾ¿¹ÉúËØÉ¨³ý³¦µÀϸ¾úºóïÔÌ­Á˳¦µÀ²¡¶¾Ñ¬È¾ÒÔ¼°³¦µÀ²¡¶¾Ê¹Óó¦µÀϸ¾ú¾ÙÐи´ÖƺÍÈö²¥¡£

¡¾µãÆÀ¡¿
¸ÃÑо¿µÄЧ¹û˵Ã÷³¦µÀÉú̬ϵͳҲÊǸö¶¯Ì¬µÄÇéÐΣ¬Í¶Ö¹Ôڴ˵ÄÖÖÖÖ΢ÉúÎïºÍ²¡¶¾Ò²»áÓл¥¶¯¡£¶øÕâ¸öϵͳµÄ״ֱ̬½Ó¹ØÏµµ½ËÞÖ÷µÄ¿µ½¡×´Ì¬¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Science, 2011; 334 (6053): 249 DOI: 10.1126/science.1211057 
Intestinal Microbiota Promote Enteric Virus Replication and Systemic Pathogenesis
S. K. Kuss, G. T. Best, C. A. Etheredge, et al.
Intestinal bacteria aid host health and limit bacterial pathogen colonization. However, the influence of bacteria on enteric viruses is largely unknown. We depleted the intestinal microbiota of mice with antibiotics before inoculation with poliovirus, an enteric virus. Antibiotic-treated mice were less susceptible to poliovirus disease and supported minimal viral replication in the intestine. Exposure to bacteria or their N-acetylglucosamine¨Ccontaining surface polysaccharides, including lipopolysaccharide and peptidoglycan, enhanced poliovirus infectivity. We found that poliovirus binds lipopolysaccharide, and exposure of poliovirus to bacteria enhanced host cell association and infection. The pathogenesis of reovirus, an unrelated enteric virus, also was more severe in the presence of intestinal microbes. These results suggest that antibiotic-mediated microbiota depletion diminishes enteric virus infection and that enteric viruses exploit intestinal microbes for replication and transmission.


3. SIRT2ͨ¹ýµ÷ÀíAPC/C»îÐÔά³Ö»ùÒò×éÍêÕûÐÔÒÖÖÆÖ×ÁöÐγÉ
¡¾¶¯Ì¬¡¿
ÍÑÒÒõ£»ùø¼Ò×åµÄ³ÉÔ±µ÷Àí¶àÖÖÒªº¦µÄÉúÎïÀú³Ì£¬µ«ËüÃÇÔÚ°©Ö¢ÐγÉÖеÄ×÷Óû¹±£´æÕùÒé¡£ÃÀ¹ú¿ÆÑ§¼Ò×î½üͨ¹ýÆÆËðÀÏÊóµÄSirt2»ùÒòÑо¿ÁËÍÑÒÒõ£»ùøSIRT2ÔÚ·¢ÓýºÍÖ×ÁöÐγÉÖеÄÐÄÀí¹¦Ð§¡£ËûÃǵÄÑо¿Åú×¢SIRT2ͨÒÑÍùÒÒõ£»¯¸¨Öú¼¤»î×ÓAPCCDH1 ºÍ CDC20¶øµ÷ÀíAPC/CµÄ»îÐÔ£¬SIRT2 ȱʧµ¼Ö°üÀ¨Ö¸µ¼ÖÐÐÄÁ£À©Ôö¡¢Òì±¶ÌåÐÔºÍÓÐË¿ÆÆËéϸ°ûéæÃüµÄAurora-A ºÍ BÔÚÄÚµÄÓÐË¿ÆÆËéµ÷Àí×ÓÔö¶à¡£Sirt2ȱʧµÄÀÏÊó»á±¬·¢ÐÔ±ðÌØÒìÐÔ·¢Ö×ÁöÐγÉ£¬Ä¸ÀÏÊóÖ÷ÒªµÃÈéÏÙ°©£¬¹«ÀÏÊó¸ü¶àµÃ¸Î°©¡£Í¬Õý³£×éÖ¯½ÏÁ¿£¬ÈËÈéÏÙ°©ºÍ¸Î°©Ñù±¾SIRT2ˮƽ½µµÍ¡£ÕâЩÊý¾ÝÅú×¢SIRT2 ͨ¹ýµ÷ÀíÓÐË¿ÆÆËéºÍ»ùÒò×éÍêÕûÐÔ¶ø¾ßÓÐÖ×ÁöÒÖÖÆ×÷Óá£

¡¾µãÆÀ¡¿
¸ÃÑо¿Ð§¹û½øÒ»²½¸»ºñÁËÎÒÃǶÔÓëÐàÂõºÍ°©Ö¢ÓÐÇ×½ü¹ØÏµµÄÍÑÒÒõ£»ùø¼Ò×åµÄÊìϤ£¬ÏàʶÁËSIRT2µÄÖ×ÁöÒÖÖÆ×÷Óü°ÆäÆðÔ´»úÖÆ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Cancer Cell, 2011; 20(4) pp. 487 - 499, DOI: 10.1016/j.ccr.2011.09.004
SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity
Hyun-Seok Kim, Athanassios Vassilopoulos, Rui-Hong Wang, et al.  
Members of sirtuin family regulate multiple critical biological processes, yet their role in carcinogenesis remains controversial. To investigate the physiological functions of SIRT2 in development and tumorigenesis, we disrupted Sirt2 in mice. We demonstrated that SIRT2 regulates the anaphase-promoting complex/cyclosome activity through deacetylation of its coactivators, APCCDH1 and CDC20. SIRT2 deficiency caused increased levels of mitotic regulators, including Aurora-A and -B that direct centrosome amplification, aneuploidy, and mitotic cell death. Sirt2-deficient mice develop gender-specific tumorigenesis, with females primarily developing mammary tumors, and males developing more hepatocellular carcinoma (HCC). Human breast cancers and HCC samples exhibited reduced SIRT2 levels compared with normal tissues. These data demonstrate that SIRT2 is a tumor suppressor through its role in regulating mitosis and genome integrity.


4. ¦Ø-3Ö¬·¾ËáÄܹ»Ô¤·À»ò¼õ»º¹ÇÊàŦÑ×
¡¾¶¯Ì¬¡¿
Ó¢¹ú¿ÆÑ§¼ÒµÄ×îÐÂÑо¿Ê״η¢Ã÷ÓãÓÍÖеĦØ-3²»±¥ºÍÖ¬·¾ËáÄܹ»ÏÔ׎µµÍ¹ÇÊàŦÑ×µÄÖ¢×´¡£ËûÃÇÔÚ×ÔÈ»µÄëàÊóÄ£×ÓÖÐÊÓ²ìÁ˸»º¬¦Ø-3¶à²»±¥ºÍÖ¬·¾ËáµÄÒûʳ¶Ô¹ÇÊàŦÑ×µÄ×÷Óá£ÌìÉúÒ×»¼¹ÇÊàŦÑ×µÄDHëàÊóºÍ²»Ò×»¼¹ÇÊàŦÑ×µÄBS2ëàÊó´Ó10ÖÜ´óµ½30ÖÜÓñê×¼ÒûʳºÍ¦Ø-3²»±¥ºÍÖ¬·¾ËáÒûÊ³Î¹Ñø¡£Í¨¹ý×é֯ѧÊֶμì²éÈí¹ÇºÍÈí¹ÇϹÇ×éÖ¯²¡Àíѧ£¬Ò²¼ì²éÆäÉú»¯Ö¸±ê°üÀ¨½ºÔ­½»Áª¡¢»ùÖʽðÊôÂѰ×ø£¨MMPs£©¡¢¼îÐÔ½ðÊôÂѰ×ø¡¢Õ³¶àÌǺͱäÐÔµÄIIÐͽºÔ­¡£Ð§¹ûÏÔʾ¦Ø-3²»±¥ºÍÖ¬·¾ËáÒûÊ³Î¹ÑøµÄDHëàÊóµÄ¾ø´ó²¿·ÖÖ¸±ê¶¼ÏòBS2ëàÊó¿¿Â££¬Åú×¢¦Ø-3¶à²»±¥ºÍÖ¬·¾ËáÒûʳïÔÌ­ÁËÒ×»¼¹ÇÊàŦÑ×µÄëàÊóÖÖϵµÄÖ¢×´£¬´ó´ó¶¼¼²²¡Ö¸±êÏòÕý³£ëàÊóÖÖϵµÄÆ«Ïò¸ÄÉÆ¡£

¡¾µãÆÀ¡¿
¸ÃÑо¿·¢Ã÷Á˦Ø-3²»±¥ºÍÖ¬·¾Ëá¶Ô¿µ½¡µÄÓÖÒ»ÀûÒæ:Ô¤·ÀºÍ¼õ»º¹ÇÊàŦÑ׵ķ¢²¡ºÍÏ£Íû¡£¹ØÓÚ¸ÄÉÆÎÒÃǵÄÒûʳ½á¹¹Óвο¼¼ÛÖµ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Osteoarthritis and Cartilage, 2011; 19 (9): 1150 DOI: 10.1016/j.joca.2011.06.005
Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease
L. Knott, N.C. Avery, A.P. Hollander, J.F. Tarlton.
Summary
Objective
To examine effects of high omega-3 (n-3) polyunsaturated fatty acid (PUFA) diets on development of osteoarthritis (OA) in a spontaneous guinea pig model, and to further characterise pathogenesis in this model. Modern diets low in n-3 PUFAs have been linked with increases in inflammatory disorders, possibly including OA. However, n-3 is also thought to increases bone density, which is a possible contributing factor in OA. Therefore we aim to determine the net influence of n-3 in disease development.
Method
OA-prone Dunkin-Hartley (DH) Guinea pigs were compared with OA-resistant Bristol Strain-2s (BS2) each fed a standard or an n-3 diet from 10 to 30weeks (10/group). We examined cartilage and subchondral bone pathology by histology, and biochemistry, including collagen cross-links, matrix metalloproteinases (MMPs), alkaline phosphatase, glycosaminoglycan (GAG), and denatured type II collagen.
Results
Dietary n-3 reduced disease in OA-prone animals. Most cartilage parameters were modified by n-3 diet towards those seen in the non-pathological BS2 strain ¨C significantly active MMP-2, lysyl-pyridinoline and total collagen cross-links ¨C the only exception being pro MMP-9 which was lower in the BS2, yet increased with n-3. GAG content was higher and denatured type II lower in the n-3 group. Subchondral bone parameters in the DH n-3 group also changed towards those seen in the non-pathological strain, significantly calcium:phosphate ratios and epiphyseal bone density.
Conclusion
Dietary n-3 PUFA reduced OA in the prone strain, and most disease markers were modified towards those of the non-OA strain, though not all significantly so. Omega-3 did not increase markers of pathology in either strain.


5. ·¢Ã÷½á³¦°©¿ÉÄܺÍϸ¾ú±£´æÁªÏµ
¡¾¶¯Ì¬¡¿
½áÖ±³¦°©µÄÖ×Áö΢ÇéÐÎÊǸöÖØ´óµÄȺÂ䣬ÓлùÒòÍ»±äµÄ°©Ï¸°û¡¢·ÇÖ×Áöϸ°ûºÍ¶àÖÖ¶àÑùµÄ΢ÉúÎïȺ¡£Ã¿Ò»²¿·Ö¶¼¿ÉÄܶÔÖ×ÁöÐγÉÓÐÓ°Ï죬¶øÎ¢ÉúÎïȺµÄ×÷ÓÃÊÇËùÖª×îÉٵġ£ÃÀ¹ú¿ÆÑ§¼ÒÔÚ9¶ÔÖ×Áö/Õý³£Ñù±¾ÖÐÓÃÈ«»ùÒò×éÐòÁÐÆÊÎö¼ì²âÁËÈ´Ö±³¦°©ÖеÄ΢ÉúÎïȺµÄ×é³É¡£Í¨¹ý95×éÖ×Áö/Õý³£DNAµÄ¶¨Á¿PCRºÍ16S rDNAÐòÁÐÆÊÎöÈ·Ö¤£ºÔÚÖ×ÁöÑù±¾Öз¢Ã÷Òì³£¸ßˮƽµÄËó¾úÊôµÄÐòÁУ¬¶øÃ»ÓÐÄâ¸Ë¾úºÍºñ±Ú¾úȺÂ䡣ͨ¹ýÓ«¹âԭλÔÓ½»Ò²Äܹ»¿´µ½½áÖ±³¦°©ÖеÄËó¸Ë¾ú¡£ÕâЩ·¢Ã÷ÏÔʾ½áÖ±³¦°©µÄ΢ÉúÎïȺ±¬·¢ÁËת±ä£¬¹ØÓÚ½áÖ±³¦°©²¡ÀíѧÖÐËó¸Ë¾ú¼òÖ±ÇÐ×÷Óû¹Ðè½øÒ»²½µÄÑо¿¡£

¡¾µãÆÀ¡¿
½áÖ±³¦°©ÖÐÒì³£¸ßˮƽµÄËó¸Ë¾úÒâζ×ÅÕâÖÖ¾úȺ¿ÉÄܶԽáÖ±³¦°©µÄ±¬·¢ÓÐ×÷Óã¬ÓпÉÄÜ»á³ÉΪ¸ÃÖÖ°©Ö¢Õï¶Ï¡¢Ô¤·ÀºÍÖÎÁƵÄÒªº¦ÒòËØ¡£µ«Æä¿ÉÄܵÄ×÷ÓûúÖÆÉÐÐèÉîÈëÑо¿¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Genome Research, 2011; DOI: 10.1101/gr.126573.111
Genomic analysis identifies association of Fusobacterium with colorectal carcinoma
Kostic AD, Gevers D, Pedamallu CS, et al. 
The tumor microenvironment of colorectal carcinoma is a complex community of genomically altered cancer cells, nonneoplastic cells, and a diverse collection of microorganisms. Each of these components may contribute to carcinogenesis; however, the role of the microbiota is the least well understood. We have characterized the composition of the microbiota in colorectal carcinoma using whole genome sequences from nine tumor/normal pairs. Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs, while the Bacteroidetes and Firmicutes phyla were depleted in tumors. Fusobacteria were also visualized within colorectal tumors using FISH. These findings reveal alterations in the colorectal cancer microbiota; however, the precise role of Fusobacteria in colorectal carcinoma pathogenesis requires further investigation.
 

6. ÌØÒìÐÔË«¼Û°ë¿¹Ô­ÓÐÓÃÒÖÖÆ¹ýÃô·´Ó¦
¡¾¶¯Ì¬¡¿
ÃÀ¹ú¿ÆÑ§¼Ò×î½ü±¨µÀÁËÒ»ÖÖÔÓ¶þ¼ÛÅäÌ壨HBL£©ÏµÍ³Äܹ»¾ºÕùÐÔµØÒÖÖÆ¹ýÃôÔ­Óë·Ê´óϸ°ûÉϵÄIgE¿¹Ìå͎ᣬ´Ó¶øÒÖÖÆ·Ê´óϸ°ûÍÑ¿ÅÁ£×÷Óá£HBLsµÄ×é³É°üÀ¨Ò»¸ö°ë¿¹Ô­£¬ÍŽáÔÚºËÜÕËáÀàËÆÎïÉÏʹµÃÄܹ»Í¬Ê±Ãª¶¨IgE¿¹ÌåFabÇøÓòµÄ¿¹Ô­ÍŽᲿλºÍ·ÇͨÀýµÄºËÜÕËáÍŽᲿλ¡£Í¬Ê±ÍŽáÔÚÁ½¸ö²î±ðÐÔ×ÓµÄÍŽᲿλʹµÃHBLs ¶ÔIgEDNPµÄÇ׺ÍÁ¦ÒÔ¼°¶Ô¹ýÃôÔ­ÓëIgEDNPµÄÍŽáµÄÒÖÖÆ×÷ÓñÈÖ»ÓÐÒ»¸öÍŽᲿλµÄ°ë¿¹Ô­Ìá¸ßÁË100±¶ÒÔÉÏ¡£ÔÚϸ°ûʵÑéÖУ¬HBLs (IC50 = 15 M)Äܹ»ÓÐÓÃÒÖÖÆ·Ê´óϸ°ûÍÑ¿ÅÁ£×÷Ó㬶øµ¥¼Û°ë¿¹Ô­Ôò¼ì²â²»µ½ÒÖÖÆ×÷Óá£

¡¾µãÆÀ¡¿
ͨ¹ýÔöÌíÒ»¸öÍŽᲿλµÄÉè¼Æ£¬ÐµÄË«¼Û°ë¿¹Ô­HBLs¶ÔÒÖÖÆ¹ýÃôÔ­Ó뿹ÌåµÄÍŽá»ñµÃÁ˰ٱ¶µÄÌá¸ß£¬´Ó¶øÄܹ»ÓÐÓõÄÓë¹ýÃôÔ­¾ºÕù¿¹Ì壬ÒÖÖÆÊ³ÎïÒ©Îï¹ýÃôºÍÏø´­¶ø²»»áÑ¹ÖÆ»¼ÕßµÄÕû¸öÃâÒßϵͳ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Chemistry & Biology, 2011; 18 (9): 1179 DOI: 10.1016/j.chembiol.2011.06.012 
Design of a Heterobivalent Ligand to Inhibit IgE Clustering on Mast Cells
Michael W. Handlogten, Tanyel Kiziltepe, Demetri T. Moustakas, Başar Bilgiçer.
We describe the design, synthesis, and characterization of a heterobivalent ligand (HBL) system that competitively inhibits allergen binding to mast cell bound IgE antibody, thereby inhibiting mast cell degranulation. HBLs are composed of a hapten conjugated to a nucleotide analog allowing simultaneous targeting of the antigen-binding site as well the unconventional nucleotide binding site on IgE Fab domains. Simultaneous bivalent binding to both sites provides HBLs with over 100-fold enhancement both in avidity for IgEDNP (Kd = 0.33 M) and in inhibition of allergen binding to IgEDNP (IC50 = 0.45 M) than the monovalent hapten (Kdmono = 41 M; IC50mono = 55.4 M, respectively). In cellular assays, HBL2 effectively inhibits mast cell degranulation (IC50 = 15 M), whereas no inhibition is detected by the monovalent hapten. In conclusion, this study establishes the use of multivalency in a novel HBL design to inhibit mast cell degranulation.
 

ÍøÕ¾µØÍ¼